الکترون

*مینا*

کاربر فعال شیمی
جایگاه الکترون



سطوح انرژی دراتم کوانتومی (پله٬ پله ) است .هر الکترون ترازانرژی خاصی را اشغال می کند.موقعیت و ویژگی های اوربیتالی که توسط هر الکترون

اشغال می شودباچهار عددکوانتومی منحصر به فرد مشخص می شود.به عبارتی دوالکترون دریک اتم حتما دریکی ازاعدادکوانتومی متفاوت خواهند

ب
ود. درواقع این اعداد حالت های متفاوت انرژی الکترون را به نمایش می گذارند.



n عددکوانتومی اصلی٬اندازه نسبی ابرالکترونی را نشان می دهند و بیانگر شماره لایه های اصلی الکترونی است( 7-1). که درضمن همان شماره

تناوب عنصر درجدول تناوبی نیزمی باشد. هرچه n بزرگتر باشد اندازه ابرالکترونی بیشتر والکترون ازهسته دورترخواهد بود .


بیشترین احتمال حضورالکترون درفضای اطراف هسته را اوربیتال می نامند.

هرتراز اصلی انرژی می تواندچند ترازفرعی انرژی نزدیک به هم داشته باشد ( s ٬p ٬ d ٬ f) .

l عدد کوانتومی فرعی ٬ بیانگرنوع وشکل اوربیتال می باشد. ومی تواند ازصفر تا 1- n تغییر کند .

l=0 l=1 l=2 l=3 عددفرعی

s p d f نوع اوربیتال


( px ٬ py ٬ pz ) ومی تواند اعداد صحیح از l - تا l+ راداشته باشد .

اوربیتال هایی که همشکل وازنظر اندازه یکسان هستندو فقط جهت متفاوتی دارند هم انرژی بوده و همتراز می نامند

عدد کوانتومی چهارم s ٬ حرکت الکترون را به دورخودش (حرکت اسپینی) توصیف می کند که درجهت عقربه ساعت ویا خلاف آن می باشد.حرکت

الکترون به دورخودش میدان مغناطیسی ایجاد می کند . مقدار آن ½ + یا ½ - می باشد. اگر جهت چرخش الکترونی به دورخودش عکس چرخش

الکترونی دیگر باشد قطب های مغناطیسی آن دو وارونه خواهد بود به این طریق ربایش مغناطیسی بین آن دو این اجازه را می دهد که دوالکترون

دریک ناحیه ازفضای اطراف هسته و دریک اوربیتال جای گیرند.
 
آخرین ویرایش توسط مدیر:

soosaan

عضو جدید
الکترون

نگاه اجمالی



ذره بنیادی پایداری با بار الکتریکی منفی 1.602X10[SUP]-19[/SUP] کولن و جرم در حال سکون 9.109X10[SUP]-31[/SUP] کیلوگرم. الکترونها در همه اتمها حضور دارند و در لایه‌های خاصی به دور هسته اتم می چرخند.




سیر تحولی و رشد
در نظریه‌های دالتون و و نظریه‌های یونانیان ، اتمها کوچکترین اجزای ممکن ماده بودند. اما در اواخر سده نوزدهم کم کم معلوم شد که اتم خود از ذراتی کوچکتر ترکیب یافته است. این تغییر دیدگاه ، نتیجه آزمایشهایی بود که با الکتریسیته به عمل آمد. در 1807 - 1808 شیمیدان انگلیسی همفری دیوی با تجزیه مواد مرکب توسط الکتریسیته ، پنج عنصر پتاسیم ، سدیم ، کلسیم ، استرونسیم و باریم را کشف کرد و دیوی با این کار به این نتیجه رسید که عناصر با جاذبه‌هایی که ماهیتا الکتریکی هستند بهم وصل می‌شوند.


در سال 1833 - 1832 مایکل فارادی مجموعه آزمایشهای مهمی در زمینه برقکافت شیمیایی انجام داد. در فرآیند برقکافت ، مواد مرکب بوسیله الکتریسیته تجزیه می‌شوند. فارادی رابطه بین مقدار الکتریسیته مصرف شده و مقدار ماده مرکب تجزیه شده را بررسی کرد و فرمول قوانین برقکافت را بدست آورد. بر مبنای کار فارادی ، جرج جانستون استونی در سال 1874 به طرح این مسأله پرداخت که: واحدهای بار الکتریکی با اتمها پیوستگی دارند. او در سال 1891 این واحد را الکترون نامید.


در سالهای پایانی سده نوزدهم میلادی بیشتر فیزیکدانان به این باور رسیدند که الکتریسته به دو صورت ظاهر می‌شود: یکی به صورت الکترون با جرم 9.109534X10[SUP]-31[/SUP] کیلو گرم و بار منفی 1.602X10[SUP]-19[/SUP] کولن و دیگری به صورت
پروتون با جرم 1.672623X10[SUP]-27[/SUP] کیلو گرم و بار 1.602177X[SUP]-19[/SUP] اعتقاد بر این بود که اتمها (و در نتیجه مولکولها) از ترکیب الکترونها و پروتونها شکل می‌گیرد. در اوایل دهه 1930 معلوم شد که همه اتمها (بجز هیدروژن) از پروتونهای مثبت و نوترونهای خنثی و با جرم 1.675X10[SUP]-27[/SUP] و بدون بار الکتریکی مثبت تشکیل می‌شود. همچنینی کشف شد که الکترون مثبت (یا پوزیترون) نیز با جرمی برابر با جرم الکترون و باری برابر با بار الکترون ولی با علامت مثبت (دست کم به صورت لحظه‌ای) وجود دارد.



ساختار اتم الکترونی

چنانچه گفته شد اتمها از ترکیب الکترونها و پروتونها شکل گرفته‌اند و هسته اتمها نیز از پروتونهای مثبت و نوترونهای خنثی تشکیل شده است. به این ترتیب ، اتم خنثی هسته‌ای با بار مثبت دارد که با الکترونهای (منفی) احاطه شده است. اندازه هسته در هر اتم از مرتبه حدود 10/1 اندازه‌ اتم است. بقیه حجم اتم را الکترونهای مداری در اشغال خود دارند.



انتقال الکترونها

در رسانای الکتریسته (که معمولا از جنس فلزند) ، مسیرهایی برای انتقال سریع الکترونها وجود دارد. یونها(اتمها و مولکولهایبا بار الکتریکی مثبت یا منفی در محلولها) نیز می‌توانند رساننده الکتریسته باشند. الکتریسته می‌تواند در هوا یا گازهای دیگر نیز منتقل شود، این انتقال یا به صورت جرقه‌ای است که چشمه‌ای با ولتاژ زیاد (چند هزار ولت به ازای هر سانتیمتر فاصله) آن را در فشار جو بوجود می‌آورد. و یا در فشار کم نظیر آنچه در لامپهای نئونی روی می‌دهد به صورت تخلیه الکتریکی است.



گسیل الکترون

فلزات داغ الکترونهای فراوانی گسیل می‌کنند که آنها را می‌توان در خلأ خوب به صورت پرتوهای کاتدی شتاب داد. این پرتوهای تولید شده در لامپ کاتدی را می‌توان به کمک میدانهای الکتریکیو مغناطیسی فلوئورتاب کانونی کرد. لامپهایی که بر این اساس کار می‌کنند در میکروسکوپهای الکترونی، صفحه‌های نمایشی رایانه‌ها و همچنین در تلویزیونهاکاربرد دارد.


بر اثر کوششهایی که برای عبور جریان برق در خلا به عمل آمد ، یولیوس پلوکر در 1859 پرتوهای کاتدی را کشف کرد. موضوع از این قرار بود که دو الکترود در یک لوله شیشه‌ای وارد کردند و پس از مسدود کردن لوله ، هوای آنرا تقریبا بطور کامل بیرون کشیدند. وقتی یک ولتاژ زیاد بین دو الکترود برقرار گردید، از الکترود منفی که کاتد نامیده می‌شود پرتوهایی گسیل یافت. این پرتوها بار منفی دارند، بر خط راست سیر می‌کنند و بر دیواره مقابل کاتد موجب تلألو می‌شوند. لامپهای تصویری که در صفحه تلویزیون و صفحه نمایشهای کامپیوتری بکار می‌روند. لوله‌های پرتو کاتدی جدیدی هستند، در این لامپها پرتوها بر صفحه‌ای متمرکز می‌شوند. این صفحه با موادی پوشیده شده‌ که هنگام برخورد با تابش پرتوها درخشش ایجاد می‌کنند.


در اواخر سده نوزدهم ، پرتوهای کاتدی بطور وسیعی مورد بررسی قرار گرفت. آزمایشهای متعدد دانشمندان به این نتیجه انجامید که پرتوهای مذکور جریانی از ذرات بار دار منفی است که حرکتی سریع دارند. این ذرات همانطور که استونی پیشنهاد کرده بود الکترون نامیده شد. این الکترونها که از فلز کاتد ناشی می‌شوند همواره یکسانند و به جنس فلز بستگی ندارند. چون بارهای ناهمنام یکدیگر را جذب می کنند، جریان الکترونهایی که
پرتوی کاتدیرا بوجود می‌آورند هرگاه از میان دو صفحه با بارهای مخالف بگذرند به طرف صفحه‌ای که بار مثبت دارد کشیده می‌شوند. بنابراین پرتوهای کاتدی در یک میدان الکتریکیاز مسیر عادی مستقیم خود منحرف می‌شوند. درجه این اختلاف به دو عامل بستگی دارد:




  1. [*=center]انحراف بطور مستقیم با اندازه بار ذره تغییر می‌کند. ذره‌ای که بار بیشتری دارد بیشتر از ذره‌ای که بار کمتری دارد منحرف می‌شود.
    [*=center]انحراف بطور معکوس با جرم ذره تغییر می‌کند. ذره‌ای با جرم بزرگتر کمتر از ذره‌ای با جرم کوچکتر منحرف می‌شود.




انواع الکترونها


الکترون آزاد

الکترونی که از اتم جدا شده و به آن بستگی ندارد. الکترونهای بیرونی‌ترین لایه‌های اتمهای فلزات بستگی کمتری نسبت به اتمهای خود دارند و با گرفتن انرژی کوچکی از این اتمها کنده می‌شوند و به شکل توده‌ای از ابر یا گاز ، شبکه‌های اتمی فلزات را در بر می‌گیرند. هنگامی که الکترونهای آزاد در میدان الکتریکی قرار گیرند، جریان الکتریکی بوجود می‌آید.



الکترون اوژه

الکترون اوژه نوعی الکترون آزاد است که از اتم یا یون گسیل می‌شود. الکترون اوژه از بازآرایی الکترونهای مقید از اتم یا یون اولیه سرچشمه می‌گیرد. این بازآیی از واکنش الکترون - الکترون که مولد نیروی دافعه است و می‌تواند بر نیروی جاذبه ناشی از برهمکنش الکترون - هسته فایق آید، صورت می‌گیرد. با آن همه بازآیی یاد شده تنها هنگامی می‌تواند رخ دهد که حداقل جای یک الکترون در تراز انرژی معین اتم یا یون اولیه خاصی باشد و در تراز با انرژی بیشتر از انرژی تهی جا حداقل دو الکترون وجود داشته باشد، یکی از الکترونهای تراز بالاتر به تراز دارای تهی جا سقوط می‌کند و الکترون دیگر به صورت الکترون آزاد از اتم خارج می‌شود.



الکترون ظرفیت یا الکترون والانس

هر یک از الکترونهای لایه خارجی اتم که در ایجاد پیوندهای شیمیایی شرکت می‌کنند.


الکترون رسانش

اتمهای هر فلزی با پیوندهای کووالانسی که راستای کاملا مشخص ندارند و میان چندین اتم پخش شده‌اند، به همدیگر مقید هستند. بنابراین الکترونهایی که قیدشان در ضعیفترین حد است (الکترون ظرفیت) می‌توانند در سراسر فلز حرکت کنند. این الکترونهای متحرک که الکترون رسانش نامیده می‌شود در خواص الکترونی و انتقال گرما در فلزها دخالت دارد.




  • [*=center]مدل گاز آزاد فرمی:برای فلزهای ساده مانند (pb , TI , In , GA , Al , Ba , Sr, Ca , Mg , Be , Rb , Cs , Ka , Na , Li) سهم الکترون رسانش در رسانندگی گازی از فرمیونها بدون برهمکنش و با چشم پوشی از انرژی پتانسیل ناشی از بخش مرکزی یونها ، می‌توان محاسبه کرد. در این مدل ، انرژی مجاز الکترونهای رسانشی پیوسته‌اند و در انرژی فرمی ε[SUB]f[/SUB]با یک سطح کروی فردی روبرو هستیم.
    [*=center]خواص الکترونی:وقتی یک میدان الکتریکی خارجی به فلز اعمال می‌شود الکترونهای رسانش شروع به شتاب گرفتن می‌کنند. اما برخورد این الکترونها با ناخالصیها به فوتونها ، ناکاملیهای شبکه ، حرکتشان را کند می‌کند، این فرآیند منجر به حالتی مانا می‌شوند که در آن سرعت سوق برای الکترون رسانش عبارت است از: v = -eET/m
که در آن e بار الکترون ، E میدان الکتریکی ، T زمان میانگین بین برخورد (یا زمان واهلش) و m جرم الکترون است.




  • [*=center]سرعت سوق الکترون:میانگین سرعتی که با آن الکترونها یا یونها ، بر اثر میدان الکتریکی در ماده‌ای رسانا یا نیم رسانا جابجا می‌شوند. نیم رساناهای خالص و آلاییده دارای حاملهای (الکترونها و حفره‌های رسانش) آزادی هستند که تحت تأثیر میدان الکتریکی ممکن است در داخل جسم جابجا شوند. تعداد الکترونها و حفره‌ها به جنس نیم رسانا و میزان و نوع آلایش و دمای آن بستگی دارد. اما در هر نیم رسانای قابل استفاده این تعداد معمولا بین 10[SUP]22[/SUP]تا 10[SUP]26[/SUP]الکترون یا حفره در هر متر مکعب است. در غیاب میدان الکتریکی این حاملها در جهت کاتوره‌ای در جسم حرکت می‌کنند و بنابراین جریان الکتریکی خالص بوجود نمی‌آورند.

    هر گاه میدان الکتریکی برقرار شود، بر حاملها نیروی الکتریکی وارد می‌شود و در جهت نیرو به آنها شتاب داده می‌شود، که این امر به ایجاد جریان الکتریکی می‌انجامد. اما حاملها با اتمها و نقص بلور ، مانند ناخالصیها و دررفتگیها نیز برهمکنش و برخورد نیز دارند و این برخوردها سبب میشوند سرعت الکترون کاتوره‌ای شود. به این ترتیب الکترونها و حفره‌ها در جهت نیروی الکتریکی دارای سرعت متوسطی هستند. و این سرعت متوسط یا سرعت سوق با توازن بین نیروی الکتریکی در زمان T فاصله زمانی میانگین بین برخوردها مشخص می‌شود.

    سرعت برخورد برابر است با V[SUB]p[/SUB] = eTE/mکه در آن ، E میدان الکتریکی اعمال شده بر حسب ولتمتر را ، e بار الکترون و [SUP]*[/SUP]m جرم مؤثر حامل است.



اسپین الکترون

اسپین یکی از ویژگیهای درونی ذرات است. اسپین خاصیتی است که به غیر صفر بودن تکانه زاویه‌ای ذره ساکن مربوط می‌شود، اینکه الکترونها دارای اسپین هستند از اهمیت خاصی برخوردار است. اسپین الکتروندر شیمی و در جنبه‌هایی از رفتار ماده معمولی ، بویژه در پدیده‌های مغناطیسی نقش اساسی ایفا می‌کند. الکترون حامل اسپین 2/1 هسته و این بدان معنی است که برای الکترون ساکن اندازه گیری تکانه زاویهای نسبت به یک محور مفروض به یکی از دو نتیجه ممکن ħ/2 ±می‌انجامد ħ = h/2πثابت کاهیده پلانک است.

اسپین الکترون دو پیامد نیزدیکی دارد: یکی اینکه الکترونها را به صورت آهنربایی میکروسکوپیکی در می‌آورد، که هم میدان مغناطیسی تولید می‌کنند و هم در برابر میدان مغناطیسی واکنش نشان می‌دهند. دیگر اینکه یک درجه آزادی داخلی نمی‌توانند حالت کوانتمی یکسان داشته باشند و این خاصیتی است به فرمیون بودن الکترونها مربوط می‌شود.




پراش الکترون

فیزیک کلاسیک ، الکترونها را ذراتی در نظر می‌گیرد با جرم و بار معین ، برهمکنش الکترون با میدانهای الکتریکی و مغناطیسی را می‌توان بر حسب حرکت ذره توضیح داد. آزمایشهای اولیه با لامپ پرتوی کاتودی که باریکه الکترون را فراهم می‌آورد، نشان داد که اجسام کوچکی که در لامپ قرار داده شوند روی پرده فسفری سایه واضح می‌اندازند. این آزمایش با تصویر کلاسیکی الکترون به صورت ذره کاملا سازگار است.


طول موج دوبروی الکترونی با انرژی 10000v یعنی الکترونی که با پتانسیل 1000v شتاب گرفته باشد، برابر 4X10[SUP]<-11[/SUP] متر است. چون این مقدار بسیار کوچکتر از اندازه جسم است، اثر پراش بسیار کوچکتر از آن است که دیده شود. بلافاصله بعد از اینکه دوبروی اظهار نظر کرد که ماده باید خواص موجی از خود نشان دهد، والتر الساسر اعلام کرد که پراش الکترونهاباید در سطح بلور قابل مشاهده باشد
 
آخرین ویرایش توسط مدیر:

S H i M A

کاربر فعال تالار شیمی
کاربر ممتاز


الکترون و رفتار دوره ها


ذره منفی موجود در هسته اتم که نقش مهمی در رفتار شیمیایی عناصر می گذارد .


اینک ما بر آنیم که نقش اکترون و رفتارهای شیمیایی که با افزایش و کاهش در دوره

های عناصر شیمیایی بوجود می آورد بررسی کنیم .



این مقاله به زبان انگلیسی می باشد.

Web-page Slideshow

Powerpoint Slideshow
 

حامدیا

اخراجی موقت
باریکه الکترونی

باریکه الکترونی

[h=2] باریکه الکترونی
[/h]


همچنانكه بشر عميق و عميق تر به مطالعه خواص مواد اطراف خود مي پردازد با تعداد بيشتري از مظاهر نيروهاي الكتريكي مواجه مي شود انرژي الكتريكي براي بشر روشهاي گوناگون و دقيقي در حل مسائل مختلف علم و انقلاب تكنولوژيك معاصر به ارمغان آورد.

ساختمان اتم:

هر اتم به صورت سيستم يكي از بارهاي الكتريكي ظاهر مي شود. هسته داراي بار مثبت و الكترون هاي در حال چرخش در اطراف آن داراي بار منفي مي باشد. چون تمركز جرم اتم در هسته اش مي باشد. چنين به نظر مي رسد كه تقريبا تمامي وجود ماده با بار مثبت توام است كه به مقدار زيادي ، خواص دنياي اطراف ما را تعيين مي كند.

اختلاف بين مواد شيميايي مثلا اكسيژن و آهن فقط به واسطه اين واقعيت است كه هسته اتمي اكسيژن محتوي 8 بار مثبت و آهن محتوي 26 بار مثبت بوده و لايه هاي هر اتم داراي همان تعداد الكترون مي باشد بيشتر واكنشهاي شيميايي در طبيعت نتيجه عكس العمل بين الكترونهاي خارجي است كه بطور نسبي بيشترين فاصله را از هسته دارا مي باشند.

براي مدتها تصور مي شد كه الكترون ساده ترين و كوچكترين ذره در جهان است. الكترون هاي تمامي مواد كاملا يكسان و مشابه هم مي باشند. چه در آب يا چوب يا آهن تحت هيچ شرايطي ممكن نيست كه بار الكتريكي مثبت يا منفي كوچكتر از بار مطلق يك الكترون وجود داشته باشد.

قوانين حاكم بر حركت الكترون:

- در طي مطالعات زياد معلوم شده كه قوانين حركتي اثبات شده براي مواد بزرگ را نمي تواند بطور كامل براي الكترونهاي داخل اتم به كار رود. در اجسامي كه يكصد ميليونيم سانتي متر بعد دارند به كلي قوانين متفاوتي مطرح مي شود. در مقايسه با منظومه شمسي يا هر سيستم مكانيكي عظيم الجثه اي كه مي تواند با توجه به سرعت اوليه اش در هر مسيري حركت كند.

- الكترون ها در اتم مجبورند كه فقط در طول مدارهايي حركت كنند كه مربوط به مقادير معين انرژي و همان مغناطيسي آنها مي شود. به طوري كه الكترون نمي تواند مقادير ديگري انرژي را جز مقادير فوق الذكر داشته باشد. طبيعت منفرد و غير متوالي مكان الكترون ها در مدارها يا به طور دقيق تر وجود مقادير دقيقاً معين از انرژي در اتم يكي از خواص اساسي تئوري مكانيك كوانتومي است.

- بر طبق تئوري كوانتومي انتقال يك الكترون از يك مدار به مدار ديگر يعني از يك حالت انرژي به حالت ديگري از انرژي در اتم با جذب يا پخش يك بار انرژي دقيقا معين همراه است. اگر يك حالت معين انرژي بوسيله يك الكترون اشغال شود، الكترون ديگر نمي تواند آن را اشغال نمايد و يك اتم نمي تواند دو الكترون با حالت انرژي يكسان داشته باشد.

- از تمام حالات ممكني كه يك الكترون مي تواند در يك اتم داشته باشد در اولين حالت آن الكترون كمترين مقدار انرژي را داشته در نتيجه به شدت جذب هسته شده و در داخلي ترين مدار الكتروني نزديك به هسته متمركز مي گردد. بنابر اين ، همه الكترونها نمي توانند در يك سطح انرژي متمركز شوند و هر الكترون بعدي سطح انرژي بيشتري را اشغال كرده و بقيه سطوح غيراشغال شده باقي مي مانند. اين قانون كه نشان دهنده پخش الكترون در تمام عناصر به ترتيب افزايش انرژي مي باشد، حالت كوانتومي نام دارد.

- خواص شيميايي يك اتم بستگي به مقدار و ترتيب الكترون ها در مدار الكتروني دارد.

مدار الكتروني عناصر در جدول تناوبي:

- هر دوره تناوب از جدول تناوبي مطابق با شباهتهاي موجود در خواص شيميايي اتمها ساخته شده است. بنابر اين ، خواص شيمايي مثلا تناوب دوم ، نزديك به خواص شيميايي تناوب اول است.

- ترتيب الكترون ها در اتم ليتيوم شبيه اتم سديم است (با سطوح انرژي متفاوت تناوب بعدي). شكل الكتروني مشابهي را براي اتم پتاسيم داريم. در مورد اتمهاي روبيديوم و سزيوم همين شباهت وجود دارد. تمامي اين عناصر متعلق به اولين گروه از جدول تناوبي يعني گروه فلزات قليايي مي باشد.

- براي جداكردن خارجي ترين الكترون ها در اتمي مثلا ليتيوم لازم است كه انرژيي معادل 5.39 الكترون ولت مصرف شود. براي دو الكتروني كه به هسته نزديك تر مي باشند، چون با قدرت بيشتري به وسيله هسته نگهداري مي شوند انرژي اتصال آنها با هسته به ترتيب برابر 75.6ev و 122.4ev مي باشد.

- جريان مستقيمي از الكترون ها (مستقل از نوع اتمهايشان) در يك هادي يا نيمه هادي جريان الكتريسته خوانده مي شود.

انتقالات مجاز الكتروني بين ترازي:

- زماني كه يك اتم از خارج انرژي دريافت مي كند اين انرژي در بسته هاي دقيقا معين كوانتا جذب اتم مي گردد و الكترون ها به مدارهاي دورتر از هسته به سطوح انرژي بالاتر جابه جا مي شوند و جذب بيشتر كوانتاي انرژي به وسيله اتم باعث انتقال بيشتر الكترون از هسته مي گردد. اين حالت كه اتم به صورت تحريك شده در آمده نمي تواند براي مدت طولاني دوام بياورد و با برگشتن الكترون به حالت قبلي اتم نيز به حالت عادي خود بر مي گردد.

- قسمت زيادي از انرژي الكترون تحريك شده به صورت كوانتايي از اشعه الكترومغناطيس پخش مي شود زماني كه اين انتقال الكتروني در خارجي ترين لايه ها انجام گيرد كه انرژي اتصال الكترون به هسته كمترين مقدار است، كوانتاياشعه مادون قرمز ، نورمرئي يا اشعه ماوراي بنفش پخش مي گردد.

- در زماني كه الكترون ها به اربيتالهاي نزديك هسته منتقل شوند (براي مثال پرش به يك يا چند مدار) كوانتاي پر انرژي تري از تشعشعات الكترومغناطيسي «اشعه ايكس محتوي انرژي چند برابر بيشتر از تابش مادون قرمز و ماوراي بنفش) منتشر مي شود.

منبع:
دانشنامه رشد



 
بالا