بانک اطلاعات [ انواع بتن] ►

Civil Boy

مدیر بازنشسته
کاربر ممتاز
من خودم توي رشته مسابقه درصد وزنی جذب آب کوتاه مدت و مقاومت ویژه الکتریکی بتن به صورت همزمانشركت كردم
خيلي خوب بود تجربه هاي زياد بدست اوردم كه هچكدومو سر كلاس تكنولوژي بتن نگفتن
 

rasool.civil

مدیر بازنشسته
من خودم توي رشته مسابقه درصد وزنی جذب آب کوتاه مدت و مقاومت ویژه الکتریکی بتن به صورت همزمانشركت كردم
خيلي خوب بود تجربه هاي زياد بدست اوردم كه هچكدومو سر كلاس تكنولوژي بتن نگفتن
خوب پس شما برا ما تعريف كن كه مسابقات چه جوريه؟؟از ضوابطش و اين مقاومت ويژه الكتريكي اصلا چيه؟؟؟
ممنون
 

Civil Boy

مدیر بازنشسته
کاربر ممتاز
خوب پس شما برا ما تعريف كن كه مسابقات چه جوريه؟؟از ضوابطش و اين مقاومت ويژه الكتريكي اصلا چيه؟؟؟
ممنون

به طور مختصر اگه بخوام بگم مقاومت الكتريكي رابطه داره مستقيم داره با ميزان جذب اب يعني هرچي بيشتر اب جذب بكنه جريان التريكي رو بيشتر از خودش عبور ميده كه اين يه امتياز منفي به حساب مياد
حالا اگه بازم دوست داشتي درباره اينكه چه كارايي كرديم تا اين ميزان جذب اب و مقاومت الكتريكي رو پايين اورديم توضيح ميدم براي خود من كه تجربه خيلي خوبي بود كه اگه دوست داشته باشين ميتونم براتون بگم
 

Hamid MB

مدیر تالار زنگ تفریح
مدیر تالار
کاربر ممتاز
تهاجم به بتن توسط آب دریا

آب دریا حاوی سولفاتها بوده و می توان انتظار داشت كه با حمله به فاز C3A موجود در تركیب سیمان مصرفی در بتن ، تشكیل اترینگایت داده و موجب انبساط و ترك خوردگی در بتن شود . اما چون كلرورها هم در آب دریا وجود دارند ، تهاجم آب دریا معمولا" باعث انبساط بتن نمی شود. توضیح مسئله در این واقعیت نهفته است كه گچ و اترینگایت در محلول كلروری خیلی بیشتر حل می شوند و این بدان معنی است كه به سادگی توسط آب دریا شسته می شوند. در نتیجه هیچگونه تجزیه یا ترك خوردگی به وجود نمی آید. ولی تخلخل مقداری افزایش و متعاقبا" مقاومت كاهش می یابد.
از سوی دیگر، فشار ناشی از تبلور نمكها در حفره های بتن ، می تواند باعث انبساط شود. تبلور در بالای سطح آب، در نقطه تبخیر آب، انجام می شود. چون محلولهای نمك در اثر فرآیند موئینگی به داخل بتن وارد می شوند ، حمله فقط هنگامی انجام می شود كه آب بتواند به داخل بتن نفوذ كند. بنابراین بازهم نفوذ پذیری بتن دارای اهمیت زیادی می باشد.
بتن در فاصله بین ترازهای جذر و مد در معرض تناوب های تر و خشك شدن قرار داشته و به شدت مورد تهاجم قرار می گیرد ، در حالی كه بتنی كه همیشه داخل آب است، كمترین آسیب را خواهد دید . در نتیجه مسدود شدن حفره های بتن به دلیل رسوب هیدروكسید منیزیم و گچ، كه از واكنش سولفات منیزیم و هیدروكسید كلسیم پدید می آیند ، تهاجم آب دریا به داخل بتن آرامتر می گردد.
در بعضی شرایط اثر آب دریا روی بتن با تاثیر مخرب یخبندان ، ضربه امواج ، و سایش همراه می گردد . با جذب نمكها توسط بتن ، خوردگی آرماتورها در نتیجه فرآیند الكتروشیمیایی آغاز شده و در نتیجه آن بتن ترك می خورد و این می تواند باعث خرابی بیشتری شود . با همان اقداماتی كه برای جلوگیری از حمله سولفاتها به كار می رود ، می توان از تهاجم آب دریا نیز جلوگیری نمود. اما در مورد آب دریا نوع سیمان در مقایسه با كاهش نفوذپذیری به میزان لازم ، از اهمیت كمتری برخوردار می باشد . در بتن مسلح ، رعایت پوشش كافی ، حداقل 5 تا 7.5 سانتیمتر ، روی آرماتورها ضروری می باشد . مصرف سیمانی معادل 350 كیلوگرم در متر مكعب در بالای سطح آب و 300 كیلوگرم بر متر مكعب در زیر سطح آب ، و نسبت آب به سیمان كمتر از 0.4 الی 0.45 توصیه شده است . تراكم خوب بتن و روش ساخت ماهرانه ، بخصوص در درزهای ساختمانی ، دارای اهمیت حیاتی می باشند .

برگرفته از تكنولوژی بتن پرفسور نویل – ترجمه دكتر علی اكبر رمضانیانپور .
 

rasool.civil

مدیر بازنشسته
به طور مختصر اگه بخوام بگم مقاومت الكتريكي رابطه داره مستقيم داره با ميزان جذب اب يعني هرچي بيشتر اب جذب بكنه جريان التريكي رو بيشتر از خودش عبور ميده كه اين يه امتياز منفي به حساب مياد
حالا اگه بازم دوست داشتي درباره اينكه چه كارايي كرديم تا اين ميزان جذب اب و مقاومت الكتريكي رو پايين اورديم توضيح ميدم براي خود من كه تجربه خيلي خوبي بود كه اگه دوست داشته باشين ميتونم براتون بگم
ممنون
بتن سفت شده ؟؟؟مگه جريان الكتريكيو عبور ميده اصلا؟؟
خيلي جالب شد
اگه امكانش هست يه توضيح مفصل بده ;)
 

sma519

عضو جدید
ترمیم خود به خود ترک در بتن

ترمیم خود به خود ترک در بتن

ترمیم خود به خود ترک در بتن


در بتن ترک خورده اگر اجازه داده شود ترک های ریز بدون تغییر مکان مماسی بسته شوند، در شرایط مطلوب کاملا" از بین خواهند رفت. این پدیده به عنوان ترمیم خود به خود شناخته می شود و اساسا" ناشی از هیدراتاسیون ذرات سیمان است که تا آن زمان هیدراته نشده و در هنگام باز شدن ترک ها در معرض آب قرار می گیرند. ترمیم همچنین توسط تشکیل کربنات کلسیم غیر محلول از هیدروکسید کلسیم موجود در سیمان هیدراته شده (چنانچه کربناته شدن اتفاق افتد) بهتر انجام می شود. چنانچه ذرات خیلی ریز در آب معلق باشند، می توانند به صورت مکانیکی باعث بند آوردن ترک ها شوند.
حداکثر عرض ترک هایی که می توانند تحت تأثیر ترمیم خود به خود قرار گیرند، بین 0.1 تا 0.2 میلی متر تخمین زده شده است و شرایط رطوبتی لازم، شامل مرطوب نمودن در دوره های پی در پی و همچنین غوطه ور نمودن است. اما نباید از آب با جریان سریع یا فشار زیاد که موجب کاهش حرکت آب از میان ترک ها می گردد، استفاده نمود. اعمال فشار در دو طرف ترک ها به ترمیم کمک می کند.
اگر عرض ترک ها در بتن جوان کمتر از 0.1 میلی متر باشد، می تواند پس از چند روز ترمیم شود. اما ترک های با عرض 0.2 میلی متر به چند هفته زمان نیاز دارند. به طور کلی هر چه بتن جوان تر باشد ( یعنی سیمان هیدراته نشده بیشتری را در بر داشته باشد)، کسب مجدد مقاومت آن زیادتر خواهد بود، اما ترمیم بدون افت مقاومت تا عمرهای سه سال مشاهده شده است. گزارش گردیده است که حتی وقتی که ترک ها ترمیم می شوند، محل آنها منطقه ضعیفی را به وجود می آوردکه در آن منطقه تحت شرایط نامساعد آتی، ممکن است بتن ترک بخورد.

برگرفته از خواص بتن _ تألیف پروفسور نویل، ترجمه دکتر هرمز فامیلی.
منبع: www.urmiacivil.mihanblog.com
:):gol:
 

neda_zzz01

عضو جدید
بررسي بتن مسلح به الياف فولادي

بررسي بتن مسلح به الياف فولادي

بررسي بتن مسلح به الياف فولادي عمران نوشته شده توسط زماني فرادينه ,عليقلي زاده مقدم
عنوان مقاله:
بررسي بتن مسلح به الياف فولادي
سرفصل مربوط:
سال انتشار:
1383
نوع ارايه:
شفاهي
محل انتشار:
( يازدهمين كنفرانس دانشجويي مهندسي عمران )
زبان مقاله:
فارسي
حجم فايل:
220.54 كيلوبايت
بررسي بتن مسلح به الياف فولادي
نويسنده‌گان:
( عليرضا زماني فرادينه ) - دانشكده عمران خنج دانشگاه لارستان-دانشجوي عمران
(
بهداد عليقلي زاده مقدم ) - دانشكده عمران خنج دانشگاه لارستان-دانشجوي عمران
خلاصه مقاله:
براي تقويت ماتريسهاي سيماني، تاكنون الياف مختلف از قبيل الياف فولادي، شيش هاي، نايلوني، پلي پروپيلن، كربن،كولار، آزبستي، كنف، بامبو، پيش خرما، پوشال برنج استفاده شده است. در اين مقاله خصوصيات بتن مسلح به الياف فولاد بررسي شده است و نقاط مثبت و منفي استفاده از اين الياف مورد بحث قرار گرفته است. همچنين از نظرمشخصات شيميايي، فيزيكي، اندازه، مقاومت، تكنولوژي، تاريخچه، روش توليد و كاربرد در مواردي همچون باندفرودگاه، بتن پرتابي، لول ههاي بتني، كف سالنهاي صنعتي ، بتن پيش ساخته پلها، روسازي جاده و بزرگراه، جدار ههاي نسوز و ساز ههاي ضد انفجار بررسيهايي صورت گرفته است.

كلمات كليدي:
الياف فولادي، بتن پرتايي، سازه انفجار
 

neda_zzz01

عضو جدید
پيش بيني مقاومت بتن هاي معمولي و ميكروسيليسي

پيش بيني مقاومت بتن هاي معمولي و ميكروسيليسي

پيش بيني مقاومت بتن هاي معمولي و ميكروسيليسي عمران نوشته شده توسط مرتضي و سینا خادمي بحريني
عنوان مقاله:
پيش بيني مقاومت بتن هاي معمولي و ميكروسيليسي در مقابل نفوذ يون هاي كلرايد به استفاده ازشبكه هاي عصبي
سرفصل مربوط:

سال انتشار:
1383
نوع ارايه:
شفاهي
محل انتشار:
( يازدهمين كنفرانس دانشجويي مهندسي عمران (
زبان مقاله:
فارسي
حجم فايل:
203.76 كيلوبايت
پيش بيني مقاومت بتن هاي معمولي و ميكروسيليسي در مقابل نفوذ يون هاي كلرايد به استفاده ازشبكه هاي عصبي
نويسنده‌گان:
( مرتضي خادمي بحريني ) - دانشكده مهندسي عمران و محيط زيست دانشگاه اميركبير-فارغ النحصيل كارشناسي ارشد مهندسي سازه
(
سينا خادمي بحريني ) - دانشكده عمران دانشگاه هرمزگان-دانشجوي كارشناسي مهندسي عمران
خلاصه مقاله:
خوردگي آرماتور در اثر نفوذ يو نهاي كلرايد از محيط اطراف به بتن، مهمترين عامل كاهش عمر مفيد ساز ههاي بتني اجرا شده در محي طهاي خورنده همچون نواحي جنوبي كشورمان است. كنترل كيفي بت ن در زمان اجرا، ميتواند منجر به ساخت ساز ههايي با عمر طولاني در اينگونه محيطها شود. انجام آزمايش تسريع شده نفوذ يو نهاي كلرايد در بتن(RCPT) يكي از روشهاي كنترل كيفي بت نهاي ساخته شده در زمان اجراي سازه ميباشد. طي يك پروژه ، تحقيقاتي، با انجام آزمايش RCPT بر روي دو نوع بتن معمولي و ميكروسيليسي، مقاومت اين بت نها در مقابل نفوذ يو نهاي كلرايد مورد ارزيابي قرار گرفته است. در اين پروژه، از 8 نوع طرح اختلاط با 2 مقدار ميكروسيليس ) 0 و 70 ، درصد مواد سيماني( و 4 نسبت آب به مواد سيماني 0/5و0/45,0/4,0/35استفاده شده است. نتايج آزمايش نشان دهنده بهبود كيفيت بتن در صورت استفاده از ميكروسيليس و همچنين كاهش نسبت آب به مواد سيماني است. در ادامه اين كار تحقيقاتي با استفاده از نتايج آزمايشگاهي و به كمك شبك ههاي عصبي، مدلهايي براي پي شبيني مقاومت دو نوع بت ن معمولي و ميكروسيليسي در مقابل نفوذ يو نهاي كلرايد، ايجاد شده است. نتايج مد لهاي ايجاد شده نشا ندهنده كارايي و دقت بالاي شبك ههاي عصبي در پي شبيني پديد ههاي نامعلوم و پيچيده دربخ شهاي مختلف مهندسي عمران همچون كنترل كيفيت بتن در زمان اجرا ميباشد

كلمات كليدي:
بتن هاي معمولي وميكروسيليسي، نفوذ يون هاي كلرايد، آزمايشRCPT، مدل هاي شبكه عصبي

 

neda_zzz01

عضو جدید
بتن خود متراكم

بتن خود متراكم

بتن خود متراكم عمران نوشته شده توسط عليرضا شاهجويي ،حامد زادمهر
عنوان مقاله:
بتن خود متراكم
سرفصل مربوط:
سال انتشار:
1383
نوع ارايه:
شفاهي
محل انتشار:
( يازدهمين كنفرانس دانشجويي مهندسي عمران (
زبان مقاله:
فارسي
حجم فايل:
274.07 كيلوبايت
بتن خود متراكم
نويسنده‌گان:
( عليرضا شاهجويي ) - دانشكده عمران دانشگاه علم و صنعت ايران
(
حامد زادمهر ) - دانشكده عمران دانشگاه علم و صنعت ايران-دانشجوي كارشناسي عمران
خلاصه مقاله:
بتن خود متراكم مورد استفاده قرارگرفته و روز به روز كاربرد خويش را بين مهندسين پيدا مي كن د. متاسفانه به دلايل نامعلوم تا كنون اين صنعت در ايران رواج نيافته اس ت. اميداست با آشنايي بيشتر مهندسين عمران با اي ن تكنولوژي ، اين صنعت جاي خويش را در ايران باز كرده و مشكلات اجرايي كارگاهي ايران را كاهش ده د. دلايل اقتصادي پيشرفت روزافزون كاربردي: (S.C.C)به شرح زير مي باشد1) اجراي سريعتر 2) كاهش نيروي انساني 3) پرداخت بهتر سطوح 4) قالب ريزي مطلوبتر5) مقاطع نازكتربتني 6) آزادي بيشتر طراحي 7) كاهش امواج صوتي بدليل عدم عمليات ويبره همره است. در اين مقاله دامنه وسيعي از S.C.C كاربردهاي عملي اين صنعت با تحقيقات بيشتر برروي خواص اطلاعات حاصله و آزمايشات انجام شده و تعدادي از روش هاي آزمايش آن مورد بررسي قرارگرفته است.

كلمات كليدي:
بتن خودمتراكم(S.C.C)، قابليت رواني، قابليت عبور، قابليت پركنندگي، كارايي
 

بستان اباد

عضو جدید
مطلب ضمیمه شده در مورد بتن پلیمری است.
 

پیوست ها

  • بتون بليمري.pdf
    170.3 کیلوبایت · بازدیدها: 0
آخرین ویرایش توسط مدیر:

ebrahim110

عضو جدید
اصطلاحات انگلیسی انواع بتن

اصطلاحات انگلیسی انواع بتن

۱-بتن ضد حرارت: Heat resistant concrete
۲-بتن عایق بندی: Insulating concrete
۳-بتن یکپارچه: Monolithic concrete
۴-بتن بدون ریزدانه No-fines concrete
۵-بتن اسفنجی Aerated concrete
۶-بتن متخلخل Cellular concrete
۷-بتن پر مایه Fat concrete
۸-بتن موزائیک Terrazzo concrete
۹-بتن لاشه سنگی Rubble concrete
۱۰-بتن نما Exposed concrete
اصطلاحات انگلیسی انواع بتن (سری دوم)
۱-بتن سبک: Lightweight concrete

۲-بتن با دانسیته پایین: low-density concrete
۳-بتن خمیری: plastic concrete
۴-بتن با حباب هوا Air entrained concrete
۵-بتن با سنگهای بزرگ Cyclopean concrete
۶-بتن با دانه های نمایان Exposed aggregate concrete
۷-بتن آرمه شده با الیاف Fiber reinforced concrete
۸-بتن الیاف دار Fibrous concrete
۹-بتن با دانه بندی گسسته Gap graded concrete
۱۰-بتن پیش ساخته Precast concrete
 

ebrahim110

عضو جدید
بتن ريزي در زير آب

بتن ريزي در زير آب

حتي المقدور بايد از بتن ريزي در زير آب اجتناب شود. به اين منظور بايد از طريق انحراف مسير آب زهكشي چاههاي زهكشی و تلمبه ويا هر روش ديگر از نفوذ آب به محوطه كار ويا حداقل به داخل قالب جلوگيري به عمل آورد در صورتي كه لايه ي تدريج آب را به عقب براند و جانشين آن شود در اين حالت بتن در محدوده كمي با آب در تماس بوده وحداقل تقليل كيفيت درآن به وجود مي آيد. اين روش در صورت قابل ملاحظه بودن ضخامت لايه آب قابل كاربرد نيست و در اين حالت بايد بتن ريزي هرگز نبايد در آب جاري كه به احتمال زياد سيمان بتن را خواهد شست ونيز آبي كه كمتر از 1 درجه سانتيگراد حرارت دارد انجام پذيرد. بتن مناسب داراي كارايي زياد اسلامپ در حدود 18 سانتيمتر وعيار سيمان نسبتا زياد 400 كيلوگرم بر متر مكعب بتن است روشهاي بتن ريزي در زير آب بشرح زير مي باشند

1) بتن ريزي با جامهاي زير آبي
در اين روش جام حاوي بتن به كف قالب برده شده و دريچه آن با آهستگي و به نحوي باز مي شود كه بتن به آرامي تخليه شده و تلاطمي در آب ايجاد نكند وبتن با آب مخلوط نشود جام بعدي در بتن از قبل ريخته شده فرو رفته ودريچه ْآن باز مي شود وبتن جديد داخل بتن مرحله اول تخليه مي شود و به اين ترتيب بتن ساير جامها با آب در تماس قرار نمي گيرند. اگر باز شدن دريچه جام با لوله هاي هواي فشرده انجام مي شود بايد جام داراي وسايلي باشد كه هواي خروجي درآب ايجاد تلاطم نكرده ودر بالاي سطح آب بيرون بيايد. سطح فوقاني جامهاي زير آبي ، به نحوي ساخته مي شوند كه داراي سقفي مجهز به قيف باشند و به اين ترتيب آب كمترين تماس را با سطح فوقاني بتن درون جام پيدا نمايد .بتن مناسب بين 300 تا 400 كيلو گرم بر متر مكعب سيمان و 15 سانتيمتر اسلامپ دارد . حئاكثر اندازه دانه هاي آن بين 40 تا 50 ميليمتر ونسبت وزن ماسه به وزن كل سنگدانه ها در حدود 40 در صد يا بيشتر است .
استفاده از جام مخصوص بتن ريزي در زيز آب براي شروع بتن ريزي باقيف ولوله نيز مناسب است وقتي 60 تا ترجيحا 90 سانتي متر از ضخامت عضو مورد نظر بتن ريزي شد، سر لوله قيف ولوله در بتن قرار گرفته وبقيه بتن ريزي با آن ، با سرعت بيشتري انجام مي پذيرد .
2) قيف ولوله
جا دادن بتن قيف و لوله به اين ترتيب انجام مي شود كه سر لوله در پايين لوله قرار گرفته وبتن از درون يك قيف به داخل لواه رفته واز آنجا در قالب ريخته مي شود. ترمي يا قيف ولوله متشكل است از يك لوله به قطر داخلي 25 تا 30سانتي متر ( 10 تا 12 اينچ) ويك قيف در انتهاي فوقاني لوله . اين وسيله بايد به نحوي روي برجها سوار شود كه بتوان آن را با بالا آمدن سطح بتن در قالب ، بالا آورد.


لوله هاي ترميها نبايد از يكديگر بيش از 5/ 3 تا 5 متر واز ديوارها ي قالب بيش از 5/2متر فاصله داشته باشند. بتن توسط جامهاي حمل بتن ، پمپ و يا تسمه نقاله به داخل قيف حمل مي شود . حمل بتن بايد بدون انقطاع صورت پذيرد زيرا در غير اين صورت ممكن است درز سرد بوجود آيد و نيز حركت مناسب بتن تازه به داخل بتن تازه به داخل بتن از قبل ريخته شده ، مختل گردد. شروع بتن ريزي با ترمي بسيار مهم است .نخستين لايه هاي بتن بايد بسيار كنترل شده وچسبنده و پر سيمان بوده و به آهستگي هر چه تمامتر وارد قالب شوند . دو روش اصلي شروع بتن ريزي عبارتند از روش لوله تر وروش لوله خشك.
روش لوله تر براي عمق آب كمتر از 30 متر و حجم زياد بتن ريزي قابل كاربرد است. در اين روش در حالي كه انتهاي لوله درزير آب به كف قالب چسبيده است ،يك توپي از جنس پارچه كرباسي يا استوانه ازجنس پي وي سي و يا يك توپ كاملا جفت شده به لوله در داخل لوله در تراز آب قرار داده مي شود. اين توپ از قيف فاصله دارد و بنابراين بتن بالايي براي فرو بردن آن به سمت پايين كافي است. از روي حجم بتن داخل لوله مي توان دريافت كه در چه موقع توپي به انتهاي لوله رسيده. پس از اين زمان مي توان با آهستگي لوله را به سمت بالا كشيد تا توپي بتواند خارج شود. بمجرد خروج توپي مجددا لوله به سمت پايين فرستاده شده وبتن از داخل قيف به داخل لوله فرستاده مي شود وبدون متلاطم كردن آب وارد قالب مي شود. پس از اولين لايه بتن ريزي مي توان سرعت ورود بتن به داخل لوله را افزايش داد .

روش لوله خشك براي عمقهاي بيشتر و قسمتهاي محدود مناسب مي باشد . در اين روش يك در به صورت آب بند به انتهاي لوله متصل ميشود . لوله بايد نسبتاً سنگين باشد تا در اثر نيروي شناوري به سوي بالا نيايد ، پايين فرستاده شده وبه قالب مي چسبد. سپس يك مخلوط بسيار پر سيمان ، خميري وچسبنده بتن براي شروع بتن ريزي وارد لوله مي شود و به مجرد رسيدن بتن به انتهاي لوله ، لوله كمي به بالا كشيده مي شود تا فشار بتن بندهاي نگه دارنده در انتهايي را گسسته بتن وارد قالب شود در اين روش مقدار بالا كشيده شدن اوليه لوله بقدر روش لوله تر نبوده و بتن كمتر با آب مخلوط مي شود. در صورتي كه بتن به صورت دائم و بدون انقطاع وارد لوله نشود ولوله توسط بتن داخل قالب مسدود شود، معمولا با چند سانتيمتر بالا آوردن سريع لوله مي توان مانع را رفع نموده وبتن ريزي را ادامه داد. سريع پايين بردن (انداختن) لوله مي تواند به انسداد بيشتر، منجر گردد. سرلوله بهتر است بين 90 تا 150 سانتيمتر داخل بتن قرار گيرد. لوله نبايد هر بار بيش از 15 تا 20 سانتيمتر به سمت بالا كشيده شود. نمونه گيري از بتن در زمانهاي مختلف و نيز كنترل ارتفاع بتن در قالب با علامت گذاري لوله ضروري است .جا دادن بتن براي حجم زياد بتن بايد از مركز قالب به سمت خارج انجام گيرد. پمپهايي كه در لبه خارجي قالب قرار داده شده اند مي توانند گلي را كه كف قالب بوده و توسط بتن به سمت ديوار قالب رانده مي شود به خارج از قالب تلمبه كنند. بتن ترمي بايد كارايي زيادي داشته باشد. اسلامپ 17 سانتيمتري و عيار سيمان 400 كيلوگرم برمتر مكعب بتن، سنگدانه هايي با حداكثر اندازه 40 تا 50 ميليمتر ونسبت وزني ماسه به كل سنگدانه حدود 45 درصد مناسب هستند. استفاده كردن از عواملي از قبيل مواد حباب ساز و پوزولانها ،سنگدانه هاي غلتيده بجاي شكسته ،افزايش مقدار ماسه كه باعث افزايش كا رايي مي شوند ،مناسب است.

3) روش بتن ريزي با سنگدانه پيش اكنده :
در بسياري از پروژه هاي دريايي بتن ريزي زير آب يك فناوري مورد تقاضا و دشوار بوده كه عمدتاَ در برنامه زمان بندي پروژه يك مسير بحراني تلقي مي شود . لذا مستلزم داشتن برنامه ريزي دقيق مي باشد . بخش بتن ريزي زير آب در يك پروژه در واقع جايي است كه طراحي ماهرانه و برنامه ريزي دقيق و حساب شده در آن مي تواند موجب كاهش احتمال بروز خطر و نيز قيمت تمام شده گردد .به طور كل در سدهاي بتني ، بتن ريزي با مشكلاتي نظير بالا رفتن دماي هسته مركزي و گرمازايي همراه مي باشد كه اين دو عامل مي توانندسبب ايجاد ترك و نفوذپذيري زياد شوند. غالباً براي رفع مشكلات مذكور ميتوان روشهايي نظير افزايش حداكثراندازه سنگدانه ها كاهش مصرف سيمان وآب مصرفي استفاده از پوزولانها استفاده ازافزودنيهاي روانساز و كندگيركننده بهره گيري از سيمانهاي كند گير و استفاده ازفنون پيش تبريد و پس تبريد را به خدمت گرفت. اما وجود مشكلاتي مانند كارآيي ،متراكم ساختن بتن ، جدايي سنگدانه ها و حمل و پخش و ديگر مسائل اجرايي سبب مي گردند كه روشهاي مشروحه در عمل با هزينه هايي سنگين همراه بوده و عدم دقت در هر يك از روشها ميتواند به كيفيت بتن نيز لطمه بزند. لذا روش نويني در اجراي سد هاي بتني كه ضمن برطرف نمودن عيوب مشروحه سبب سر مايه گذاري كمتر درتجهيز كارگاه مي شود معرفي مي گردد كه به روش بتن پيش آكنده معروف مي باشد.
در اين روش ابتدا سنگدانه درشت تك اندازه را در قالب ريخته و سپس از درون لوله هائي كه درون سنگدانه قرار گرفته است ملات ريز دانه اي را به داخل سنگدانه هاي درشت پيش آكنده تزريق مي نمائيم تا بتن مناسب حاصل گردد و جسم یکپارچه ای بوجود آید. ملات سيماني که متشکل از ماسه ريز است به کمک روان کننده ها ، رواني زيادي پيدا مي کند و به راحتي مي تواند بين سنگدانه ها رسوخ کند. در اين نوع بتن جداشدگي اتفاق نمي افتد و در نتيجه يک بتن متراکم، آب بندي شده و با دوام توليد مي شود. در ضمن هيچگونه ويبراتور داخلي به کار برده نمي شود ولي براي پرداخت سطح مي توان از ويبراتورهاي سطحي بهره برد.
بتن پيش آكنده از جمع شدگي ناچيزي برخوردار است و عيار سيمان مصرفي آن نيز كم مي باشد . تأمين نسبت آب به سيمان كم ، نفوذ ناپذيري مطلوب و مقاومت زياد با اين روش كاملا"ميسر است . همگني بتن و عدم جداشدگي از ويژگيهاي اين نوع بتن ريزي است . حداكثر اندازه سنگدانه به حداقل بعد قطعه محدود مي شود و حداكثر اندازه ماسه ملات بايد به حدود حداقل اندازه اسمي سنگدانه درشت محدود گردد . ملات مصرفي بسيار پر عيار بوده و همچنين شل و آبكي مي باشد و معمولا" از مواد پوزولاني مناسب و روان كننده ها در ملات استفاده ميشود ضمن اينكه به كندگير كننده ها نيز احتياج مبرمي داريم .
4) بتن ریزی با پمپ :
برای بتن ریزی با پمپ ، باید طرح اختلاط بتن چنان انتخاب شود که نسبت آب به سیمان کمترین مقدار ممکن را داشته و مقدار آن از 0.6 تجاوز ننماید . مقدار سیمان باید نسبتا" زباد باشد ( در محدوده 350 تا 400 کیلو گرم در متر مکعب ) تا چسبندگی کافی بتن تأمین شود و خطر شسته شدن سیمان از بین برود . به منظور افزایش کارائی بتن می توان از سنگدانه های گردگوشه استفاده نمود . استفاده از دانه بندی پیوسته با حداکثر اندازه 38 میلیمتر و همچنین مقدار کافی ریزدانه ضروری است . چنانچه سنگدانه ها حاوی مقدار کافی ریزدانه نباشد ، می توان با افزودن مواد ریز چسبندگی کافی را در بتن ایجاد نمود .
بتنی که پمپ می شود باید تا حدی روان تر باشد تا از مسدود شدن لوله ها جلوگیری شود . به منظور آنکه آب به سیمان از حد مجاز بالاتر نرود باید برای تأمین روانی از مواد افزودنی مناسب نظیر روان کننده ها و فوق روان کننده ها یا مواد افزودنی آب نگهدار استفاده شود . جز در مواردی که افزودنیهای ویژه مصرف می شود ، باید از سقوط آزاد بتن به داخل آب جلوگیری کرد تا پدیده جداشدگی ذرات رخ ندهد .
در این روش لوله پمپ ، با یک توپی داخل قالب قرار داده میشود و فشار بتن پمپ شده توپی را خارج کرده ( همانند روش لوله ی تر ) و بتن داخل قالب ریخته میشود. با افزایش فشار بتن ریزی به دلیل افزایش عمقی که سر لوله در بتن قرار گرفته، لوله به آهستگی به بالا کشیده میشود. باید بتن، مقداری از بالای قالب سرریز کند تا لایه ی اولیه ی بتن که قدری با آب مخلوط شده است از قالب خارج شود. هنگام بتن ریزی باید اختلاف فشار هیدرولیکی داخل و خارج قالب از بین رفته و سطح آب در داخل و خارج قالب در یک تراز باشد ..
5) کار با کیسه : (bag work)
کار با کیسه احتمالا یکی از قدیمی ترین و ساده ترین تکنیکهای قرار دادن بتن زیر آب است. این متد یک بسط طبیعی استفاده از مصالح بنایی است، اما دارای انعطاف پذیری است که بلوک های سا ختمانی را قادر می سازد که به هم قالب بندی شوند ، که در نتیجه قید خوبی پیدا می کنند.این روش ساخت متمرکز بر کار کارگر است اما توافق پذیری زیادی با نوع کار دارد. پروژه های قدیمی مهندسی از کیسه ها برای ساخت المان های بزرگ موقتی و کارهای دایم استفاده شده است.اگر چه پیشرفتهای جدید در بتن ریزی زیر آب باعث شده این متد بی مصرف به نظر آید، اما نباید آن را تا این حد دست کم گرفت. یک برای جمعframe work استفاده رایج از کیسه ها در ساخت دیوار های حایل برای عمل به عنوان
کردن بتن پاشی. دیگر استفاده رایج آن در قراردهی سریع کیسه ها برای فرم دادن به حرکا ت غیر طبیعی و مکرر سیال. برای کار های ترمیمی کوچک کیسه ها به مهندسان راه حل ارزان ، ساده و مورد استفاده در خیلی از موارد ارایه می دهند. این تکنیک در مورد کارهای با دوام نباید با روش های مدرن مقایسه شود اما برای کارهای موقتی و یا کوتاه مدت این روش باید مد نظر قرارگیرد.
کیسه های مورد استفاده در این فرایند معمولا از پارچه مقاوم کنفی هستند و سایز آنها باید به صورتی باشد که برای انسان قابل حمل باشد. حداکثر اندازه دانه ها در حدود 12 میلی متر است . نصف کیسه باید با یک بتن خیلی پلاستیک پر شود. کیسه ها قابل انعطاف خواهند بود، بنابراین آنها را قادر می سازد که در هم قفل شوند. خمیر سیمان از بین بافت های کنف تراوش می کند ووصل کردن کیسه ها به هم کمک می کند. زیاد پر کردن کیسه انعطاف پذیری مورد نیاز کیسه ها را برای قراردهی کاهش می دهد.
کیسه ها با دست در جایشان گذاشته می شوند به همان نوع ارتباط دادنی که در کارهای آجری استفاده می شود. همان طور که کیسه قرار داده می شوند با کاری مانند میخ کوبی به وسیله طول کوتاهی از فولاد مسلح می شوند.


6 ) Placing non dispersible concrete(N.D.C)
این نوع بتن برای کمتر کردن جدایی به کار می رود، همچنین دارای خاصیت جاری شدن و خود تراز شدن را دارد. در نتیجه ، این ماده خیلی مرتجع ایت نسبت به تکنیکهای ضعیف قراردهی. چسپندگی بتن مرطوب به وسیله پلیمر از جدایی جلوگیری می کند حتی در شرایطی که بتن از بین آب ریخته می شود. خاصیت سیالیت آن باعث که بتن به صورت مناسبی قابل مسلح کردن باشد یا درشرایطی که بتن بتن باید متراکم شود به راحتی استفاده شود. بیشترین اثر این بتن در سهولت تولید بتن با کیفیت بالا در زیر آب است. خاصیت ذاتی چسبنده بتن اجازه می دهد از چند متر بالا تر ، بتن از میان آب ریخته شود.
با استفاده از روشهای مرسوم و بتن های معمولی ، سطح تماس بتن و آب در معرض فرسایش و مخلوط شدن قرار دارند، بنابراین ریختن بتن تازه در بالا بر روی بتن ریخته شده قبلی سبب به وجود آمدن لایه ضعیفی از مواد می شود. اما در مورد این نوع بتن خاصیت ویسکوزیته طبیعی مخلوط از این مشکل سطحی جلوگیری می کند، بنابراین قراردهی بر بتن قبلی را میسر می سازد.
پمپ کردن این نوع بتن احتمالا راحت ترین راه قراردهی است ، کیفیت مواد یک سرعت حمل نسبتا سریع را اجازه خواهد داد به طوریکه نگهداری از پوشش بتن دیگر ضروری نیست. خاصیت ویسکوزیته طبیعی بتن در تولید افت های فشاری بالاتر در هنگام پمپ کردن موثر است . در کل افت فشار در هنگام استفاده از این بتن می تواند تا 50 در صد بیشتر از افت فشار در بتن های معمولی باشد
برای اندازه گیری توانایی عود ترازی این نوع بتن ، بتن در یک لوله که 20 متر طول دارد و از آب پر شده ریخته شد. بتن در قالب ریخته شد و اجازه داده شد در همان ترازی که به صورت راحت قرار می گیرد بایستد. در اتمام این آزمایش ، مقاومت فشاری بتن به وسیله نمونه برداری اندازه کیری شد .بین آزمایش نشان می دهد که ابن نوع بتن کیفیت خود ترتزی بالایی دارد و مقدار از دست دادن مقاومت آن بر اثر جریان بتن خیلی کم است.

کنترل و نظارت:
کنترل کیفیت بتن دارای اهمیت بسیار زیادی است در فرایند بتن ریزی زیر آب. سد شدن در یک لوله و قیف سبب نتایج خیلی بدی خواهد شد. بنابراین تمام بتن هایی که وارد محل اجرا می شوند باید قبل از استفاده تست شوند. سرعت حمل و نقل نیز یک عامل بسیار مهم است. در فرایند قراردهی و حالت آماده نگهداشتن سطح ضروری است. در موارد استفاده از قیف و لوله در حجم بزرگ ، یک برنامه دقیق باید برای مطمئن شدن از حمل و نقل صحیح و پیوسته بتن آماده شود.
دیده بانی فرایند قراردهی بتن در زیر آب اغلب غیر ممکن است. غواص ها می توانند برای دیده بانی فرایند پیشرفت بتن ریزی استفاده شوند ولی در اکثر موارد امکان دید زیر آب به حالتی است که غواصی به عنوان یک کنترل گر بی نتیجه خواهد بود. عموما ، بر اساس بررسی انتهایی انجام می گیرد. بعد از ریختن بتن بازرسی های غواص باید انجام گیرد تا میزان حباب هایی که پس از بتن ریزی در سطح بتن ایجاد می گردند اندازه گیری شود و از بین بروند.
www.omransazehparsian.blogfa.com
 

ebrahim110

عضو جدید
مقابله با خوردگی بتن

مقابله با خوردگی بتن

مسأله خوردگی فولاد در بتن از معضلات عمده کشورهای مختلف جهان است. این مسأله حتی در کشورهای پیشرفته همچون آمریکا، کانادا، ژاپن و بعضی کشورهای اروپایی هزینه های زیادی را برای تعمیر آنها به دنبال داشته است. به عنوان مثال درگزارش های بررسی پل ها در امریکا حدود 140،000 پل مسأله داشته اند. این مسأله در کشورهای در حال توسعه و در کشورهای حاشیه خلیج فارس بسیار شدیدتر بوده و سازه های بتنی زیادی در زمانی نه چندان طولانی دچار خوردگی و خرابی گشته اند. بررسی ها در این مناطق نشان می دهد که اگر مصالح مناسب انتخاب گردد، بتن با مشخصات فنی ویژه این مناطق طرح گردد، در اجرای بتن از افراد کاردان استفاده شود و سرانجام اگر عمل آوری کافی ومناسب اعمال شود، بسیاری از مسائل بتن بر طرف خواهد گشت. به هرحال برای پیشگیری در سال های اخیر روش ها و موادی توصیه و به کار گرفته شده است که تا حدی جوابگوی مسأله بوده است.
استفاده از آرماتورهای ضدزنگ و نیز آرماتورهای با الیاف پلاستیكی frp یكی از این روش ها است که به علت گرانی آن هنوز کاملا توسعه نیافته است. به علاوه عملکرد دراز مدت این مواد باید پس از تحقیقات روشن گردد.

از روش های دیگر کاربرد حفاظت کاتدیک در بتن می باشد با استفاده از جریان معکوس با آند قربانی شونده می توان محافظت خوبی برای آرماتورها ایجاد نمود. این روش نیاز به مراقبت دائم دارد و نسبتا پرخرج است ولی روش مطمئنی می باشد.

برای محافظت آمارتور در مقابل خوردگی، چند سالی است که از آرماتور با پوشش اپوکسی استفاده می شود. تاریخچه مصرف این آرماتورها بویژه در محیط های خورنده نشان می دهد که در بعضی موارد این روش موفق و در پاره ای نا موفق بوده است. به هرحال اگر پوشش سالم بکار گرفته شود با این روش می توان حدود 10 تا 15 سال خوردگی را عقب انداخت.

استفاده از ممانعت کننده ها و بازدارنده های خوردگی بتن نیز به دو دهه اخیر برمی گردد. مصرف بعضی از این مواد همچون نیترات کلسیم و نیترات سدیم جنبه تجارتی یافته است. به هر حال عملکرد این مواد در تاخیر انداختن خوردگی در تحقیقات آزمایشگاهی و نیز در محیط های واقعی مناسب بوده است. بازدارنده های دیگری از نوع آندی و کاتدی مورد آزمایش قرار گرفته اند ولی دلیل گرانی زیاد هنوز کاربرد صنعتی پیدا نکرده اند.

برای محافظت بیشتر آرماتور و کم کردن نفوذپذیری پوشش های مختلف سطحی نیز روی بتن آزمایش و به کار گرفته شده است. این پوشش ها که اغلب پایه سیمانی و یا رزینی دارند با دقت روی سطح بتن اعمال می گردند. عملکرد دوام این پوشش به شرایط محیطی وابسته بوده و در بعضی محیط ها عمر کوتاهی داشته و نیاز به تجدید پوشش بوده است. روی هم رفته پوشش های با پایه سیمانی هم ارزانتر بوده و هم به علت سازگاری با بتن پایه پیوستگی و دوام بهتری در محیط های خورنده و گرم نشان می دهند.

با پیشرفت روزافزون انقلاب تکنولوژیک به ویژه در تولید بتن های خاص برای مناطق و شرایط خاص می توان از این بتن ها در ساخت وسازهای آینده استفاده نمود. دانش استفاده صحیح از مصالح، اجرای مناسب و عمل آوری کافی می تواند به دوام بتن ها در مناطق خاص بیفزاید. تحقیفات گسترده و دامنه داری برای بررسی دوام بتن های خاص در شرایط ویژه و در دراز مدت بایستی برنامه ریزی و به صورت جهانی به اجرا گذاشته شود.

http://www.omransazehparsian.blogfa.com
 

ebrahim110

عضو جدید
مقاله کامل درمورد بتن ریزی در هوای گرم ایران

مقاله کامل درمورد بتن ریزی در هوای گرم ایران

یکی از عوامل تخریب بتن در فلات مرکزی ایران بتن ریزی در هوای گرم می باشد. در محیطهای گرم دمای بتن زیاد بوده و این مسوله موجب تبخیر سریع آب ، گیرش زود رس و کاهش کارایی بتن می شود.
برای رسیدن به بتن مناسب و با مشخصات مکانیکی مورد نیاز باید شرایط ویژه ای رعایت شود.
اقلیم شناسی:
طبق طبقه بندی اقلیمی بخش بزرگی از ایران دارای اقلیم گرم می باشد در فلات مرکزی اقلیم گرم و خشک و در سواحل و جزایر جنوبی اقلیم گرم و مرطوب وجود دارد . در اقلیم گرم و خشک تبخیر بیشتر از بارندگی و اختلاف دمای شبانه روز به 25 درجه سلسیوس می رسد. متوسط دما در روزهای تابستانی حدود 45 و در زمستان حدود 30 درجه سلسیوس است. رطوب نسبی بسیار کم و به ندرت از 50 درجه افزایش می یابد و عموما در حدود 10_20 درجه می باشد تغییرات دما در شبانه روز منجر به وزش باد های گرم و عموما با گردباد و سرعت زیاد می شود. شرایط مزبور برای کارهای بتنی مناسب نمی شود و مقاومت و پایائی (دوام) به طور محسوسی کاهش می یابد و برای دسترسی به بتن بادوام زیاد تهمیدات ویژه ای را باید به کار برد.



خرابیهای بتن:
بتن سالهاست که به عنوان مصالح پایا و بادوام ، ارزان و مقاوم(در حد قابل قبول) به عنوان مصالح سازه ای،ملات،کف سازی،و پرکننده در ساختمانها و ابنیه مختلف به کار گرفته شده است. ولی متاسفانه اگر به طور مناسب، تهیه و عمل آوری نشود در محیط های گرم و خورنده طول عمر مفید آن به طور محسوسی کاهش می یابد. قبل از وارد شدن به مشکلات بتن ریزی در هوای گرم مکانیزم های خرابی بتن را به طور کلی مورد بحث قرار می دهیم.
خرابیهای بتن به طور کلی یا به صورت شیمیائی و یا به صورت فیزیکی می باشند. در ضمن خرابی خطاهای اجرائی را نیز باید به این مجموعه اضافه کرد که عمدتا نقش تسریع در کاهش پایائی خواهند داشت. خلاصه انواع خرابی بتن در زیر ارائه شده است :




خرابی بتن:


1) شیمیائی:



• حمله سولفات ها
• حمله کلرورها و خوردگی فولاد
• کربناتی شدن

• واکنش قلیاوی سنگدانه ها



2) فیزیکی:

• یخ زدگی و ذوب متوالی

• فرسایش و سایش



• خلاء زایی (کاویتاسیون)
• نفوذ نمک ها در بتن
• حریق

• ضربه

• شرایط محیطی

• حمله باکتریها

3) خطاهای اجرائی:

• دانه بندی یکنواخت و نامناسب

• خاک دار بودن شن و ماسه

• انبار کردن نامناسب مصالح بتن (شن و ماسه،سیمان،آب،مواد افزودنی)

• به کار گیری نوع و مقدار نامناسبسیمان

• تراکم نامناسب

• عمل آوری نامناسب

• به کار گیری آب بیش از حد مورد نیاز در مخلوط بتن


وجود اقلیم گرم به طور مستقیم و غیر مستقیم تمام عوامل خرابیهای شیمائی و فیزکی بتن را به جز یخ زدگی و ذوب متوالی تشدید می کند. بنابراین و در اینچنین اقلیمی باید شرایط ویژه ای را به کار برد و حتی الامکان خطاهای اجراوی را نیز به حداقل کاهش داد.

تاثیر محیط گرم روی بتن:
هم بتن تازه و هم بتن سخت شده در محیطهای اقلیمی گرم و در درجه حرارت زیاد بخشی از عملکرد مطلوب و پایائی خود را از دست می دهند. نیاز به آب بیشتر ، گیرش سریع و کاهش اسلامپ و کارائی، افزایش امکان ترک خوردگی خمیری ، تبخیر سریع آب سطحی بتن و تغییر در مشخصات مکانیکی این بخش و نیاز به عمل آوری سریع از مشکلات بتن تازه در اقلیم گرم است. این مشکلات با افزایش نفوذ پذیری که خود منجر به کاهش مقاومت ذاتی بتن در مقابله با خرابیهای دیگر می شود از تاثیرات محیط گرم روی بتن سخت شده می باشد . علت تغییرات در بتن سخت شده به طور عمده ناشی از اجبار به مصرف آب بیشتر در طرح اختلاط است.
بزرگترین مشکل اقلیم گرم روی بتن، گیرش سریع و کاهش کارائی بتن تازه می باشد که برای جبران آن تولید کنندگان آب مصرفی طرح اختلاط افزایش می دهند. با افزایش آب مصرفی مقاومت کاهش و نفوذ پذیری افزایش می یابد و در صورتیکه عوامل مخرب دیگر مثل یونهای مضرر هم در محیط وجود داشته باشد و به سرعت عمر مفید و پایائی بتن کاهش خواهد یافت و در مناطق گرم و خشک و تبخیر سریع آب از سطح آزاد بتن فرایند آبگیری ( (Hydration سیمان متوقف شده و منجر به ترکهای جمع شدگی خمیری (Plastic shrinkage cracks) خواهد شد.
در محیطهای گرم و مرطوب به علت نفوذ رطوبت در بتن سخت شده خرابی های بتن افزایش می یابد البته به جز ترک خوردگی ناشی از جمع شدگی. به هر حال در محیط های گرم و خشک نیز امکان رطوبت در پاره ای از کاربردها به طور محسوس وجود دارد مثل سازه های آبی بتنی ، پی ها که در خاک مدفون هستند و به احتمال کاربرد زمینهای اطراف آب و رطوبت به خاک تزریق خواهد شد.

مشکلات بتن ریزی در مناطق گرمسیر به صورت خلاصه عبارتند از :

_ نیاز به آب بیشتر در طرح اختلاط

_افزایش سرعت گیرش سیمان

_کاهش اسلامپ و کارآئی بتن تازه به علت گیرش زود رس

_ایجاد ترکهای جمع شدگی خمیری

_مقاومت فشاری نهائی کمتر (گرچه مقاومت فشاری اولیه افزایش می یابد)

_افزایش نفوذ پذیری و کاهش محسوس پایائی بتن

_ظاهر نامطلوب سطح بتن
_کاهش زمان اجرائی جهت حم و ریختن بتن و ویبره زدن (در پاره ای از موارد این زمان به 20 دقیقه کاهش می یابد)

تمهیدات بتن ریزی در مناطق گرمسیری :
در صورتیکه دمای بتن در لحظه بتن ریزی از 32 درجه بیشتر باشد باید بتن ریزی رامتوقف کرد یا شرایط ویژه ای را جهت کنترل دمای بتن به کار برد. به هر حال در ردزهای گرم سال در مناطق گرمسیر موارد زیر باید مورد توجه قرار گیرد.
_دمای سیمان در هنگام اختلاط باید کمتر از 50 درجه باشد نگهداری سیمان در محلهای سایه و خنک و با استفاده از سیلو مناسب با رنگ آمیزی مناسب می تواند در پائین نگهداشتن دمای سیمان به کار رود.
_میزان مصرف سیمان نباید از 350 کیلوگرم بر متر مکعب کمتر باشد تا بتوان کاراوی و مقاومت لازم را به دست آورد در ضمن نباید از 450 کیلوگرم بر متر مکعب بتن بیشتر باشد چون گرمای آزاد شده ناشی از فعل و انفعالات سیمان منجر به دمای زیاد بتن تازه خواهد شد.
_به کار گیری سیمان کند گیر (در حد تیپ دو)به کار گیری سیمان پوزولانی به خصوص استفاده از میکروسیلیس یا به کارگیری مواد افزودنی که موجب کاهش دمای گیرش شود توصیه می شود.
_شن و ماسه باید در محل خنک و سایه (زیر سایه بان) نگهداری شوند . در صورت لزوم سنگدانه ها با آبپاشی خنک شوند.
_به کارگیری دانه های گرد گوشه (رودخانه ای) به علت ایجاد کارائی بیشتر مناسب تر است.
_دانه بندی شن و ماسه باید حتما در محدوده استاندارد باشد و اگر در حد میانی استاندارد باشد که منجر به تولید بتن متراکم شود بهتر است.
_به کار گیری شن درشت منجر به نفوذ پذیری بیشتر می شود بنابراین به کارگیری شن ریزتر در طرح اختلاط توصیه می شود.
_حتی المکان باید آب خنک استفاده شود به کارگیری عایق حرارتی برای لوله ها و مخازن آب توصیه می شود. در صورت ناتوانی در کنترل بتن می توان از خرده یخ برای خنک کردن آب استفاده نمود.

_به هیچ وجه نباید برای کنترل سلامپ و کارائی از آب بیشتر از حد تعیین شده در طرح اختلاط استفاده نمود.
میلگرد در شرایط محیطی فوق العاده شدید باید باید گالوانیزه با آغشته به اپوکسی باشند(در مناطق گرم و خشک به کارگیری این روشها ضروری نمی باشند)
_به کارگیری پوشش بتنی در اطراف میلگرد ها جهت تامین پایائی ضروری می باشد باید از به کارگیری مقاطع نازک بتنی با درصد زیاد میلگرد خودداری شود.

_به کار گیری قالب چوبی به علت کوچکی ضریب انتقال حرارت نسب به قالب های فلزی مرجع است.

_قالب ها باید حتما آب بندی باشند تا شیره و آب از دسترس بتن خارج نشود.

_بتن ریزی در ساعات خنک و سایه روز انجام شود.

_حتما از تبخیر آب سطحی بتن جلوگیری به خصوص در مقابل وزش باد و تشعشعخورشید با بکارگیری روکشهائی روی سطحی جلوگیری کرد.

_تراکم بتن حتی الامکان باید به صورت کامل انجام شود تا پایائی بتن را بتوان تضمین نمود.


_عمل آوری بتن باید به طور کامل و در اولین فرصت ممکن انجام شود و به نحوی که آب سطحی بتن از دست نرود. روشهای عمل آوری عبارتند از:

· جاری نمودن آب مناسب روی بتن (توجه به تبادل حرارتی و از دست رفتن حرارت بتن لازم است)
· آب پاشی به طور مدوام و با آب مناسب البته توصیه می شود به خصوص دفعات اولیه آب دارای حرارت نزدیک بتن تازه باشد تا امکان تباد حرارتی از بین ببرد.حتی اگر قرار است آبّ روی سطح بتن گرفته شود باید چند ساعت اولیه با آب گرم روی سطح بتن آب پاشی نمود و سپس اقدام به این کار کرد.

· به کارگیری روکش مرطوب نظیر گونی، نمد، حصیر،کاه،ماسه تمیز و خاک اره.

· به کار گیری روکش غیر قابل نفوذ شامل کاغذ نفوذناپذیر،نایلون.

حداقل زمان عمل آوری در مناطق گرمسیری 7 روز می باشد ولی برای سیمانهای تیپ 2و 5 و سیمانهای پوزولانی 14 روز است.

_به کار گیری گوشه های پخ شده در قطعات جهت جلوگیری از تبخیر سریع از این نواحی.




نتیجه گیری:
فلات مرکزی ایران کویری بوده و دارای اقلیم گرم و خشک می باشد. شرایط آب و هوای اقلیم مزبور جهت بتن ریزی و عمل آوری مناسب نمی باشد. طراحان و مجریان می توانند با به کار گیری مشخصات و روشهای اجرائی مناسب بتن با مقاومت فشاری ،پایائی و کارائی خواسته شده تولید نمایند. افزایش آب به بتن جهت افزایش کارائی نتیجه نامطلوب دارد. تامین رطوبت و جلوگیری از وزش باد از روی سطح بتن در دوره عمل آوری ضروری می باشد و به طور وسیعی از ترک خوردگی جمع شدگی جلوگیری می کند طبق آیین نامه آبا به کارگیری بتن تازه با دمای بیشتر از 32 درجه سلیسوس ممنوع است و باید در شرایط هوای گرم با خنک کردن آب و سنگدانه ها از دمای بتن کاست و سپس استفاده نمود.

http://www.omransazehparsian.blogfa.com
 

ebrahim110

عضو جدید
آزمایش های مربوط به بتن الیاف پلیمری چگونگی ساخت آن

آزمایش های مربوط به بتن الیاف پلیمری چگونگی ساخت آن

یکی دیگر از الیاف های که در بتن مسلح استفاده می شود بتن الیافی پلیمری می باشد یکی از مزایای الیاف پلیمری مرکب نسبت به مواد فلزی پدیده خستگی می باشد که در گذشته درصنایع هوایی استفاده می شد و رفتار خوبی را در مقابل خستگی از خود نشان داده اند فولاد معمولاًدر اثر گسترش ترک به طور ناگهانی گسیخته میشود ولی مواد مرکب پلیمری در اثر پارگی الیاف و یا ماتریس در سطح تماس الیاف بسیار کند گسیخته می شود. پراکندگی قابل ملاحظه موجود در نتایج آزمایشها روی مواد مرکب پلیمری باعث شده که در عمل تنش طراحی کمتری برای این مواد در نظر گرفته شود. طبق نظر دوهوفر (۱۹۷۳)، رفتار خستگی رزینها مختلف با توجه به تفاوت شیمیایی زیاد فرقی نمی کند ولی اپوکسی ها عملکرد خستگی بهتری دارند.
طبق نظر هالاوی (۱۹۹۳) مکانیزم تخریب مواد پلیمری مرکب عبارت است از:
۱-ترک برداشتن ماتریس
۲-لایه لایه شدن مواد
۳-پارگی الیاف
۴-از بین رفتن چسبندگی بین ماتریس والیاف

طبق نظریه کرسیس(۱۹۸۹):ورقها با الیاف یک جهته به دلیل اینکه تمام بار درجهت نیرو به الیاف وارد میشودمقاومت خستگی خوبی دارند ورقه ورقه شدن الیاف مرکب به علت تنشهای بین صفحه ای میباشد معمولاً از انتهای آزاد وتکیه گاه شروع می شود وبه طرف داخل ورق گسترش می یابد.

یک مکانیزم مهم خرابی جدای بین الیاف و رزین در سال ۱۹۷۳ دو هیو فز مشاهده کرد:
Gfrp باعث جداشدگی میشود ولی در GFrp تازه تا۷۰درصد مانع جدا شدگی می شود. استاتیکی ۳۰درصد مقاومت

ترمیم وتقویت سازه های بتن مسلح با استفاده از روش الیاف پلیمری مركب در بتن مسلح (اف ار پی):

درحقیقت پوشش كاملی از ورقهای نا زك فولاد والیاف پلیمری مركب است كه می توان آن را برای تقویت تیرها وستون ها ودال هاو...استفاده نمود. مقاوم سازی با الیاف فولادی از طریق چسباندن به وسیله چسب رزین واپوكسی در تیرها وستون ها انجام میگیرد در ترمیم تیرها و ستون ها به روش (اف ار پی ) با الیف پلیمری مركب باید موارد زیر را در نظر داشت:

1-شرایط به كار گیری و سختی كار
2-ابعاد لایه تقویت درهندسه و وزن بنا
3-دوره زمانی اجرای طرح تقویت 4-هزینه اجرای طرح

انواع الیاف فولادی مركب در ساختمان شامل زیر میباشد:
1-الیاف شیشه
2-الیاف كربن
3-الیاف آرامید

در الیاف مركب فولادی می توان از چند نوع الیاف استفاده كرد كه به ان هیبرید (Hybrid) گویند.

1- الیاف شیشه ای: رایج ترین وپر مصرف ترین نوع الیاف مورد استفاده در سقف کامپوزیت است. بر حسب نوع ترکیب مواد به کار رفته به انواع گوناگون تقسیم میشوند. مزایای این الیاف قیمت پایین واستحکام کششی بالا ومقاومت شیمیای بالاو خواص عایقی بالا میباشد معایب آنها عبارتست از مدول کششی پایین و وزن مخصوص نسبتاً بالا وحساسیت در برش وهمچنین با دما ورطوبت نیز استحکام کاهش می یابد.

2- کربن: دانسیسته آن ۲۲.۷ کیلو نیوتن برمتر مکعب می باشد وشکل مختلف ان بلوری می باشد وضخامت ان نازکتر از موی انسان می باشد و دارای قطر ۶-۱۰میکرو متر می باشد.


مزایایی اصلی آن:
استحکام بالای خستگی-مقاومت در برابر خوردگی- ضریب انبساط حرارتی پایین


معایب:
قیمت بالا -کرنش در شکست-هادی الکتریکی


3- الیاف آرامید:

پلیمر های آرامید دارای خصوصیاتی چون نقطه ذوب بالا و پایداری حرارتی عالی ومقاومت در برابر شعله وغیر قابل حل بودن در بسیاری از حلال های آلی شناخته شده اند دانسیسته ان بین ۱۲-۱۴.۶ کیلو نیوتن بر متر مکعب می باشد دارای خواصی چون مقاوت در برابر ضربه عدم حساسیت به شکاف خواص الکتریک- خود خاموش کنی از خصوصیات آن می باشد. به دو صورت نام تجاری کولار۲۹-کولار۴۹ به بازار عرضه می گردد.

http://www.omransazehparsian.blogfa.com
 

ebrahim110

عضو جدید
بررسی رفتار الیاف و تاثیر آن در كنترل ترک هاى بتن

بررسی رفتار الیاف و تاثیر آن در كنترل ترک هاى بتن

بتن از سه عنصر اصلى شن و ماسه و سیمان تشکیل شده است که در آن شن و ماسه توسط سیمان به یکدیگر چسبانده می شوند.این ماده ساختمانی داراى مزایا و معایبی است که کاربرد ان را در مواردى لازم و مفید و در موارد دیگر غیر ممکن یا مضر می سازد. از جمله معایب بتن مقاومت کششی بسیار ناچیز آن می باشد که این رفتار ترد و شکننده موجب شکست ناگهانی و فروریختن سازه های بتنی در هنگام زلزله می گردد. مشکل ترد بودن بتن را مى توان با مسلح کردن آن توسط آرماتور هاى فولادى در جهت نیروهای کششى برطرف نمود. اما در موارد متعددی جهت این نیرو های کششی به طور دقیق معلوم نمی باشد. از طرفى در بتن تازه به دلیل جمع شدگی ابعاد بتن تغییر پیدا کرده و ترک هایی به وجود می آیند که نتایج این ترک ها در بتن سبب افزایش نفوذپذیرى، از بین رفتن سطح بتن، خوردگی آرماتورها و کاهش خواص مکانیکی می باشد.
یکی از راه حل های مناسب براى مقابله با این مشکلات استفاده از مقادیر کم الیاف به منظور کنترل رشد ترک وافزایش مقاومت کششى بتن می باشد. کاربرد الیاف بطور فراگیر از اوایل سال1960در کشور هاى صنعتی پیشرفته آغاز شده ودر طی این 4 دهه جنس و شکل الیاف و نحوه ساخت بتن الیافی بهبود یافته و کاربرد ان نیز فزونی یافته است.شاهد تاریخی این فناورى کاربرد کاهگل در ساختمان ها می باشد.در واقع بتن الیافی نوع پیشرفته این تکنولوژی می باشد که الیاف طبیعی و مصنوعى جدید، جانشین کاه و سیمان جانشین گل به کار رفته در کاهگل شده است. الیاف به کار رفته در بتن به جنس های مختلفی نظیر شیشه ، فولاد، کربن، پلی پروپیلن، کولار و غیره تولید می شوند که در این میان الیاف فولادی دارای مزایایی نسبت به سایر انواع می باشد که از جمله این موارد :

1- دارای مدول الاستیسیته و کرنش شکست بالابوده که با توجه به قابلیت شکل گیری مناسب و مقاومت کششی بالا از مناسبترین و اقتصادی ترین نوع الیاف به حساب می آید.
2- بالاترین افزایش را در مقاومت و شکل پذیری بتن ایجاد می کنند.
3- به اشکال ظاهری گوناگون جهت بهبود رفتار بتن قابل ساخت هستند.
4 - اختلاط آنها با دیگر مواد بتن بسهولت انجام پذیر است.
متن موجود نتایج ارزیابی رفتار الیاف به منظور کنترل ترک هاى ناشى از جمع شدگى در بتن استاندارد و خودتراکم می باشد. اگر بتن از جمع شدن بازداشته شود ، تنشهای کششی ایجاد شده در آن باعث ترک خوردگی مقطع می شوند. در بتن استاندارد با نسبت آب به سیمان بالاتر از 45% جمع شدگى ناشى از خشک شدن به عنوان مهمترین دلیل ایجاد ترک در سنین اولیه توصیف شده است .در بتن خود تراکم در سنین اولیه به دلیل چسبندگی بالاى مواد ریز موجود, جمع شدگی و خزش بیشترى نسبت به بتن استاندارد مشاهده مى شود ولی در مرحله سخت شدن تاخیرى در شروع جمع شدگی بتن خود تراکم به وجود می آیدکه به دلیل پایین بودن سرعت تبخیر از سطح خارجی اعضاء بتنى می باشد. جمع شدگى ناشى از خشک شدن از همان ابتدا یعنى زمان هاى اولیه بتن ریزى و حتی قبل از افزایش ظرفیت مکانیکى بتن آغاز مى شود که بستگی به :خواص بتن (طرح اختلاط، طریقه ى بتن ریزى و روش های عمل آورى) شکل و چگونگی اعضاء بتنى و شرایط محیطى (دما، رطوبت مربوطه، سرعت باد) دارد. چون جمع شدگى به دلیل کمبود آب درون بتن به سطح اعضاء تحمیل مى شود,کرنش در این قسمت از اعضاء ایجادشده و ترک هائى با منشاء drying shrinkage از نواحى سطحی که در تماس با محیط هستند آغاز مى شود,در نتیجه اعضاء با سطح خارجى بالا (مانند دال ها و پانل هاى پیش ساخته) در تماس با یکک ها می بینند و این امر با عبور هوا از روى نمونه هاى تازه تشدید مى یابد اما از نتایج آزمایش ها مشاهده می شود که با استفاده از مقادیر مناسب الیاف جمع شدگى و به تبع آن ترک ها به میزان قابل توجهی کاهش مى یابند. براى کنترل ترک هاى بتن تحت اثر جمع شدگی دو روش متفاوت پیشنهاد می شود:
1-اندازه گیرى کاهش جمع شدگى با توجه به حدود آب از دست رفته از سطح در معرض هوا(بدون پوشش)اعضاء
2-توسط اتصال اجزا بتن که می تواند رشد ترک ها را کنترل کرده و از انتشار خرابى در اعضا در سنین اولیه جلوگیری کند. محیط مهاجم بیشترین آسیب را در اثر به وجود آمدن تر
اولین روش بررسى نحوه ى عمل آورى بتن و آب نگهدارى و یا افزودنی هاى تقلیل دهنده ى جمع شدگى بوده که هدف این روش کاهش تنش کششی روی بتن است. دومین روش استفاده از افزودنی ها و الیافى هستند که با بتن تازه ترکیب مى شوند و ظرفیت مکانیکى مخلوط را در سنین کم تعیین کرده در نتیجه از رشد و انتشار ترک ها جلو گیرى مى کنند به این معنا که با حضور الیاف تعداد بیشتری ترک ایجاد شده و این امر باعث انتقال تنشهای کششی از میان ترکها و کاهش تمرکز تنش می شود. حرکت ترک ها در هر دو نوع بتن استاندارد و خود تراکم جهت مشخصى نداشته و عمود بر هم از طرفى به طرف دیگر عبور می کنند ولی در کل می توان3 حالت فشاری و کششی و برشی را برای حرکت ترک ها در نظر گرفت.
همچنین با ورود الیاف به بتن مستقل از مواد تشکیل دهنده 2 نوع وضعیت اصلى موازى و عمود بین ترک و الیاف مشاهده می شود که در صورت عبورالیاف عمود بر لبه هاى ترک با پل زدن الیاف بین ترک ها یکپارچگی بتن تا تغییر شکلهای زیاد حفظ شده و مقاومت خمشی و کششی به دلیل خاصیت دوزندگی الیاف بالا می رود . بنا به دلایل ذکر شده استفاده از آرماتورها از دید گاه میکروسکوپى در کنترل ترک ها مفید واقع نشده و حتی در صورت بروز ترک با پدیده خوردگی مواجه می شوند و بتن کاملا از بین می رود.
درصورتیکه با توزیع اتفاقی الیاف در فواصل بسیار کوچکتر از فاصله بین آرماتورها، اندازه ترک ها کوچکتر شده و باعث کاهش نفوذپذیری و پایداری بتن در محیط های مهاجم می شود. در حالت کلى توزیع اتفاقی الیاف در فواصل بسیار کوچکتر از فاصله بین آرماتورها باعث پخش و کوچکترشدن اندازه ترک ها شده و پس از ترک خوردن ، مقاومت کششى و خمشى به دلیل خاصیت دوزندگی الیاف بالا رفته و یکپارچگی بتن تا تغییر شکلهاى زیاد حفظ می شود.
الیاف را میتوان قبل,بعد یا در حین میکس به مخلوط بتن اضافه کرد ولی براى آسانى پخش باید به صورت خشک وارد مخلوط شود. البته باید توجه داشت در فرآیند ساخت بتن الیافی باید از ایجاد پدیده گلوله ای شدن (Balling) که به دلیل استفاده از مقادیر زیاد و نادرست الیاف رخ مى دهد جلوگیری بعمل آید زیرا در این صورت پدیده انسداد در بتن صورت گرفته و اثر الیاف عملا از بین خواهد رفت.
به دلیل اینکه مقدار الیاف مورد استفاده در بتن برای جلوگیری از پدیده (Balling) بسیار کم مى باشد (تقریبا 0.1%)، مقاومت فشارى به اندازه زیادی افزایش پیدا نمى کند زیرا الیاف نیروى مکانیکى ماکروسکوپى نبوده و تنهایک نیروى کمکى محلى به حساب آورده مى شوند. براى مقایسه هزینه ساخت بتن الیافی با با بتن مسلح به آرماتور می باید مزایاى بتن الیافی از جمله مقاومت ضربه اى بسیار بالاتر، جمع شدگی و عرض ترک کمتر، دوام بیشتر و کاهش هزینه های مربوط به تعمیر ، حفظ و نگهداری، کنترل شکستهای موضعی، ایجاد ترک و گسترش ترک، عمر مفید بیشتر، کنترل نفوذپذیرى بیشتر و بویژه زمان اجراى بسیار کمتر را (در مقایسه با بتن مسلح به میلگرد) در نظر داشت.

http://www.omransazehparsian.blogfa.com
 

ebrahim110

عضو جدید
کاربرد پوششهای صنعتی در نفوذناپذيری بتن A

کاربرد پوششهای صنعتی در نفوذناپذيری بتن A

در کنار روشهای متداول برای جلوگيری از نفوذپذيری و خوردگی بتن و آب بندنمودن آن چون استفاده از سيمانهای پوزولان طبيعی و مصنوعی، ميکرو سيليس، حفاظت کاتدی، پوشش آرماتور ها با رزين اپوکسی، استفاده از ورقهای محافظ آلياژی، آرماتورهای آلياژی و کامپوزيت و ورقه های، کاربرد ژئوسنتتيک ها استفاده از پوشش بتنی محافظ و بتن پليمری، يکی از روشهای مقرون به صرفه و مؤثر استفاده از پوششهای صنعتی است، در اين نوشتار به بررسی تأثير برخی از پوششها در کاهش نفوذ برخی از یونهای مضر چون کلر و سولفات می پردازيم.
مقدمه :
بتن در محیط های خورنده حاوی یون کلر و سولفات به مرور زمان خورده شده و خلل وفرج در آن زیاد می گردد و تصور عمومی بر این است که به دلیل مقاومت بالای آن نیازی به پوشش محافظ ندارد ولی بایستی اذعان داشت که بتن با خواص قلیایی ذاتی در محیط اسیدی به شدت آسیب می بیند و بتن به دلیل شکننده بودن تحت تنشها و ضربات مکانیکی در طی مدت زمان ترک خورده و خرد می شود و زنگ زدگی و خوردگی آرماتورهای بتن در شرایط خورنده محیط به سطوح بتن گسترش می یابد و در میان روشهای فوق الذکر، استفاده از پوششهای صنعتی کار آمد می باشد همواره در ذهن یک مهندس سازه سوالاتی چون
- پوشش صنعتی مناسب بایستی چه مشخصاتی داشته باشد ؟
- چه نکاتی را در هنگام انتخاب یک پوشش باید مد نظر داشت ؟
- چه باید کرد نا پوشش انتخاب شده خواص عالی خود را در طول سالیان حفظ کند ؟
مطرح است.
• عوامل مؤثر در آسیب بتن مسلح در محیط های خورنده :
1- استفاده نادرست از سازه ( بارگذاری بیش از حد، ضربه، خستگی )
2- سایش و فرسایش ( کف ها، زیرسازی ها، موج گیری ها )
3- اثرات محیطی ( حرارت، رطوبت، کربناسیون )
4- مواد اولیه ناسازگار ( مصالح سنگی قابل انقباض، ساختار مرکب )
5- شسته شدن ( حل شدن با جاری خنثی یا قلیایی )
6- حمله مواد شیمیایی ( سولفات ها، اسیدها، اسیدهای آلی،... )
7- واکنش قلیایی سنگدانه
8- خوردگی فولاد

2- آشنایی با خرابی های شیمیایی ناشی از عوامل محیطی :
2-1- خرابی سولفاتی
سولفاتهای محلول چون سدیم، پتاسیم، کلسیم و منیزیم در اغلب نقاط دنیا به طور طبیعی در آب و خاک وجود دارند. معمولاً خاکها یا آبهایی که دارای چنین سولفات هایی هستند، قلیایی نامیده می شوند. کلیه این سولفاتها برای بتن مضرند.
2-1-1 مکانیزم حمله سولفات ها
سولفات ها ترکیبات مختلف سیمان هیدراته شده را مورد حمله قرار می دهند. سولفات های سدیم و پتاسیم با هــــیدروکسید کلسیم و هــیدروآلومینات کلسیم ترکیب مــی شونـد.
فــعل و انــفعال ســولفات ســــدیم با هیدروکسید کلسیم
وفعل و انفعال سولفات سدیم با هیدروآلومنیات کلسیم
محصولات واکنشهای فوق عبارتند از:
1- گچ که موجب سستی سطح بتن و مقاومت آن شده، به میزان 125 درصد حجم مواد جامد را افزایش می دهد
2- سولفوآلومینات کلسیم که بنام اترینگایت خوانده می شود وباعث افزایش قابل ملاحظه در حجم بتن و در نتیجه ترک و ریزش آن می گردد. میزان افزایش حجم مواد بر اثراین ترکیب به 225 درصد می رسد.
سولفات کلسیم فقط با هیدروآلومینات کلسیم واکنش انجام می دهد که در اثر این واکنش دو شکل مختلف هیدروسولفوآلومینات کلسیم تشکیل می شود:
منوسولفات با مقدارکم
سولفوآلومینات کلسیم یا اترینگایت به مقدار زیاد

2-2- خرابی کلروی
علاوه بر تأثیر کربناسیون، مهمترین عامل زنگ زدگی و خوردگی آرماتور در بتن، وجود یون کلرید در آن است که ممکن است از مصالح آلوده یا مواد افزونی آغشته به کلر یا در اثر نفوذ منابع خارجی مثل محیط دریا وارد بتن گردد. یونهای کلرید تنها درآب وجود دارند از این رو نفوذ کلرید مشروط به حضور آب در سیستم منفذی بتن می باشد. مکانیسم ورود یون کلرید به داخل بتن یا از طریق سیستم مکنده موئینگی است که آب آلـوده به کلـر وارد بتـن میشود، یـا ازطریق نفوذ ساده یونها ( انتشار) در آب راکد، وارد منافذ بتن می گردد. حالت اول مختص بتن های خشک می باشد وآب وسیله ای است که یون ها را در داخل بـتن حمل می کند. درحالت دوم ( انتشار) مختص بتن اشباع شده یا نزدیک به اشباع است ( بتن مغروق) دربتنی که درچرخه متناوب تر وخشک قرار می گیرد هر دو مکانیسم اجرا می شود وبنابراین تحت چنین شرایطی سرعت افزا یش یافته نفوذ یون کلرید وجود دارد.
2-2-1 مکانیزم خرابی کلروی
معمولاً خاصیت قلیایی بالای سیمان پرتلند (PH در حدود 13) منجر به ایجاد لایه محافظ نازک از اکسید فریک Fe2O3 بر روی سطح فولاد می گردد و آن را روئین و درمقابل خوردگی بیشتر محافظت می نماید. اگرچه خوردگی کلاً متوقف نمی گردد، ولـی آهنگ آن بسیار نـاچیز بوده و درحـد قـابل قبول می باشد، تا زمانیکه این لایه روئین کننده فولاد بر روی سطح آن باقی بماند، بتن محیطی ایده آل برای حفاظت فولاد در مقابل خوردگی می باشد. ترکیباتی چون دی اکسیدکربن و یون کلر می توانند باعث تخریب و از بین رقتن این قشر محافظ گردند و میلگردها را در مقابل عوامل تخریبی بدون محافظ بگذارند.
تمام کلریدها در بتن بصورت آزاد نیستند و بخشی از یونها با محصولات هیدراتاسیون سیمان پیوند فیزیکی و شیمیایی برقرار می کنند. بنابراین یونهای کلـــــرید در بـــتن به سه حالت پیوند فیزیکی، شیمیایی و آزاد یافت می شوند محصول هیدرتاسیون و پیوند شیمیایی یون کلر، تمک فریدل می باشد.
2-3 مکانیزم خوردگی فولاد
خوردگی فولاد (میلگردها) در بتن یک فرآیند الکتروشیمیایی است.
واکنش آندیک
واکنش کاتدیک
در صورتی که Fe(OH)3 محصول اصلی زنگ زدگی میلگرد باشد حجم آن 4 برابر آهن خورده نشده است و در نتیجه انبساط آن فشار زیادی به اطراف بتن وارد می کند که باعث ترک خوردگی پوشش بتنی اطراف آرماتور می شود و آرماتور بدون محافظ در معرض عوامل محیطی قرار می گیرد. ادامه خوردگی باعث کاهش تدریجی سطح میلگرد می گردد و در صورتی که تعمیرات انجام نشود تخریب و شکستگی ممکن است بطور کامل روی دهد که در این حالت عمر مفید نمونه به اتمام رسیده است.
انجام فرایند خوردگی مشروط به حضور آب واکسیژن می باشد. از این رو انتظار می رود بتنی که کاملا در آب مغروق است به دلیل کمبود اکسیژن و یا بتنی که در فضای کاملا خشک (احتمالا دررطوبت زیر 40 درصد) قرار دارد، خوردگی وجود نداشته باشد.

2-2-2 عوامل موثر در سرعت نفوذ یون کلر
1- تخلخل پوشش بتنی (ساختار منافذ)
2- نوع سیمان و مقدار سیمان (اثر شیمیایی بتن)
3- شرایط محیطی
4- ضخامت پوشش روی آرماتور
5- کربناتی شدن بتن
6- وجود ترک در بتن به علت انقباض و یا مقاومت کم در مقابل یخ زدگی
7- استفاده از تسریع کننده های کلروی با درصد بالا در بتن، غلظت یون کلر در اطراف آرماتور را افزایش می دهد.

2-4 کربناسیون
هوای معمولی دارای03/0 درصد گاز دی اکسید کربن co2 است که در صورت نفوذ co2 به داخل بتن، بین هیدروکسید موجود در بتن و co2 واکنش شیمیایی انجام می گردد و کربناتها تشکیل می شوند.

2-4-1 عوامل موثر در میزان کربناسیون
1- شرایط محیطی
2- تخلخل پوشش بتن
3- مقدار سیمان و تاثیر سیمانهای پوزولانی

3- عوامل داخلی مؤثر بر خرابی های بتن
3-1 نفوذ پذیری بتن
3-1-1 عوامل مؤثر در نفوذ پذیری بتن
1- نسبت آب به سیمان
2- تخلخل بتن
3- درجه هیدراتاسیون
4- خواص سیمان
5- اثر دما : با افزایش دما میزان نفوذ پذیری افزایش می یابد.
3-2 واکنش قلیایی سنگدانه ها
برای واکنش قلیایی سنگدانه ها باید
1- اجزای فعال و واکنش زا در سنگدانه باشد.

2- قلیایی کافی (K2O، Na2O) در بتن وجود داشته باشد. 3- رطوبت کافی

مکانیزم واکنش قلیایی - کربناتی
مکانیزم واکنش قلیایی- سیلیسی
3-3 فساد مصالح ( وجود بیش از حد املاح در مصالح تشکیل دهنده بتن)
3-4 آب مصرفی
3-5 کیفیت و نوع سنگدانه
4- عوامل خارجی مؤثر بر خرابیهای بتن (عوامل فیزیکی و مکانیکی)
4-1 سایش، فرسایش و خلأزایی(کاویتاسیون)
مقاومت سایشی بتن رابطه مستقیمی با مقاومت فشاری و نسبت معکوس با نسبت آب به سیمان دارد همچنین این مقاومت به دانه بندی و جنس سنگدانه ها بستگی دارد آب انداختگی و تشکیل دوغاب سخت سده در منجر به ایجادسطح شکننده و ضعیف در مقابل سایش دربتن می گردد که با تأخیر در عملیات پرداخت و ماله کشی بتن و ایجاد خلأ یا مکش در بتن می توان مقاومت سایشی بتن را افزایش داد .کاویتاسیون بر اقر تغییر ناگهانی در سرعت، جهت آب و افت فشار منجر به حفره بر اثر پدیده خلأزایی می گردد به عبارت دیگر هر زمان که فشار در نقطه ای از مایع به دلیل بی نظمی در سطح جریان به حد فشار بخار کم شود، حبابهایی در مایع جاری تشکیل می گردد، این حبابها با مایع به سمت پایین دست جریان حرکت کرده و به هنگام ورود به منطقه ای پر فضار با ضربه می ترکند، ترکهای مکرر حبابها در نزدیکی سطح بتن سبب کنده شدن و ایجاد چاله هایی در آن خواهد شد.
4-2 تاثیر هوای سرد و یخ زدگی
4-3 خرابی ناشی از نمکها و شوره زدگی : بلورهای نمک در نزدیکی سطح بتن ایجاد می گردد رشد بلورها مانند یخ زدگی منجر به تنشهای انبساطی شده و پوسته های خمیر سیمان و سنگدانه های ریز از بتن جدا می شودسولفات منیزیم در مقایسه با سایر نمکها خطرناکتر بوده و منجر به بلوری سدن نمک در سطح بتن و گاهی اوقات به داخل بتن از طریق منافذ موئینه نفوذ کرده و حجم زیادی را تخریب می کند
با توضیحات فوق الذکر با اعمال یک پوشش با دوام و مناسب می توان جلوی خرابهیای داخلی و خارجی بتن را گرفت از طرفی مکانیزم خرابی سولفاتی، کلروی، کربناتی را کنترل کرد.
5-اهمیت آماده سازی سطح :
تقریباً 95 درصد اهمیت یک پوشش به کیفیت زیرسازی سطح و 5 درصد باقیمانده به نوع پوشش وروش کاربرد آن مربوط می شود .
5-1 دلایل آماده سازی سطح :
1- اطمینان از چسبندگی مناسب رنگ به سطح
2- افزایش چسبندگی به علت افزایش سطح و اقزایش گروههای فعال سطح درواحد سانتیمتر مربع
3- اطمینان از اینکه واکنش بین رنگ و سطح در اثر حضور یونهای فعال نظیر کلریدها وسولفاتها شکسته و تخریب نشود که با توجه به خورتده بودن محیط توجه بیشتری می طلبد
در کاربرد پوششها 3 انتخاب بسیار مهم وجود دارد
1- انتخاب نوع روش زیر سازی 2- انتخاب نوع آستری 3- انتخاب نوع پوشش یا رویه رنگ
5-2 روشهای آماده سازی سطح
روشهای مکانیکی : نظیر فشار بخار مایع ( بخار آب تحت فشار) و ساینده های تحت فشار(سند بلاست)، هوای متراکم، فشار مستقیم و ثقل، سایش با ورقه های سمباده کاغذی وفلزی و ابزارهای دستی چون برس سیمی، کاردک کم عرض قلم چکش چلقئ چکش لبه تیز در این تحقیق با فرض ناهمواریهای سطح بتن تا حد امکان اصلاح شده است.
ابزارهای الکتریکی (ضربه ای- چرخشی) پاشیدن آب تحت فشار (واترجت) و استفاده از سود برای واکنش با سولفات و کلرید سطحی و تشکیل نمک و شستشو با آب
مکانیسم پاشیدن ساینده ها
1-جریان هوای متراکم
2-نیروی چرخ دوار ( نیروی گریز از مرکز)
عوامل تعیین کننده در میزان فشار
•1- انرژی ذرات ساینده پرتاب شده
•2- زاویه برخورد ساینده با سطح کار
•3- سختی سطح کار
•4- سختی ساینده
مکانیسم فشار مستقیم
درصنعت 3 سیستم ابزار مختلف وجود دارد
•1- سیستم معمولی پاشیدن ساینده خشک
•2- سیستم پاشیدن در خلاً
•3- سیستم پاشیدن ساینده مرطوب
عوامل مؤثر در انتخاب ساینده مناسب
1-اندازه 2-شکل 3-ترکیب شیمیایی 4-PH 5-درصد رطوبات موجود 6- درصد روغن موجود 7- رنگ 8- ثبات وزن در اثر حرارت 9- وزن مخصوص 10- قابلیت تهیه 11-قیمت 12- سختی
ساینده ها به 2 دسته 1- معدنی (طبیعی) 2- سربار فلز تقسیم می کنیم. تقسیم بندی ساینده ها براساس درصد بلور سیکا انجتم می گردد که از طیف سنجی مادون قرمز بدست می آید .
 

ebrahim110

عضو جدید
کاربرد پوششهای صنعتی در نفوذناپذيری بتن B

کاربرد پوششهای صنعتی در نفوذناپذيری بتن B

•2- روشهای شیمیایی : حلال شویی، اسید شویی، قلیا شویی ( مثل هیدروکسید سدیم)، شستشو با محلولهای الکترولیتی، استفاده از رنگ برها و ترکیبات تشکیل دهنده کمپلکس آلی فلزات روشهای حلال شویی : مالیدن حلال از طریق پارچه یا برس - اسپری - غوطه وری سطح کار قابل حمل در حوضچه یا تانک حلال - روغن زدایی با بخار حلال
اسیدشویی از طریق اسیدسولفوریک،کلریدریک، نیتریک،فلوئوریدریک و فسفریک
در 3 مرحله انجام می شود 1- آماده سازی قبل از اسید شویی 2- شستشو با اسید 3- شستشوی سطح تمیز شده پس از اسید شویی
رنگبرها به 2 دسته 1- آلی (مثل متیل کلراید) 2 - معدنی تقسیم می شوند.
در فرمولاسیون رنگبرها 1- مواد فعال کننده سطحی جهت کاهش سطحی مایع 2-الکل ها جهت نفوذ در لایه رنگ و تورم و جداسازی آن از سطح 3-اسیدگلونات ویا نمکهای آن جهت جدا شدن رنگ از سطح (آب، الکلهاو گلیکول اتر) وجود دارد.
3- تمیزکاری انرژیک
1- با استفاده از انرژی حرارتی شعله 2- استفاده از امواج ماورا صوت 3-استفاده از لامپ 4- استفاده ازاشعه لیزر 5-استفاده ازپلاسمای گاز گرم 6-استفاده از جت اسفنجی
6-استفاده از آستری پس از تمیز کاری سطح
1- واش پرایمر 2-فسفاته کردن شامل فسفات روی و فسفات آهن 3-کروماته کردن

خواص آستریهای کارگاهی
•- ایجاد چسبنگی خوب در سطح فلز
•- مقاومت لازم و کافی در مقابل خوردگی قلز
•- زمان خشک شدن کوتاه
•- مقاومت در مقابل ضربه و ترک خوردگی
•- مقاومت در برابر سایش
•- قابلیت پرکنندگی حفره ها
•- چسبندگی به پوشش بعدی

7-بخشهای مختلف تشکیل دهنده یک پوشش:
1-رزینها
2- رنگدانه و پرکننده
- واقعی
- حفاظتی نظیر پودر روی و فسفات) (Zinc Rich
- با اثر خاص
3- مواد افزودنی واصلاح کننده
- رقیق کننده ها
- نرم کننده ها
- شتاب دهنده ها
- بهبود دهنده های سطحی شامل رقیق کننده،نرم کننده، شتاب دهنده و بهبود دهنده سطحی و . . .
4- بتونه ( ماستیک)
5- حلال
مایعات شیمیایی فراری هستند که برای رقیق کردن رزین به آن افزوده می شود و در انتخاب حلال مناسب بایستی به 1- قدرت حلالیت 2- سرعت تبخیر 3- نقطه جوش 4- نقطه اشتعال و قابلیت شعله وری 5- سمیت آن توجه داشت.
طبقه بندی حلالها 1- ترپنها 2- هیدروکربنها (نفتیک مثل وایت اسپریت، آلیفاتیک و آروماتیک مثل تولوئن و ترکیات آن نظیر تولوئن دی ایزو سیانات TDI، تری نیترو تولوئن TNT، زایلن و منومر استایرن (وینیل بنزن) )3- حلالهای اکسیژندار ( الکلها ( هیدروکسیل) مثل متانول، اتانول، بوتانول، گلیکولها و گلیسرولها و . . .، اترها،کتونها مثل استون، استرها) 4- نیتروپارافین ها 5- حلالهای کلر دار : خواص آنها عبارت است از1- وزن مخصوص بالا 2- قابلیت اشتعال کم 3- بوی خاص 4- خواص بیهوش کننده و سمیت زیاد 5- قدرت حلالیت زیاد
6- هاردنر(سخت کننده)
برای اصلاح برخی از خواص رزین از هاردنر استفاده می شود به عنوان مثل برای رزین اپوکسی از پلی آمین، پلی آمید، استر، وینیل و کولتار ( از مشتقات قطران)
8-انواع رزین
- طبیعی : به صورت خام در طبیعت یافت می شود صمغ وشیره درختان، رزینهای فسیلی می باشد یکی از آنها رزین کولتار است که از قطران بدست می آید وبرای اصلاح و بهبود مقاومت و نفوذ ناپذیری رزین اپوکسی و پلی اورتان بکار میرود.
- مصنوعی (سنتزی)
الف- آلکیدی : از پلی ال، پلی اسید و اسید چرب (روغن) تشکیل شده
پلی ال الکل با بیش از دو هیدروکسیل(مثل گلیسرین) و پلی اسید، اسید آلی با دو یا چند عامل کربوکسیل یا انیدرید ( مثل انیدرید فتالیک) تشکیل شده است
روغنها به 3 دسته 1- خشک شونده (مثل روغن برزک و ماهی) 2- نیمه خشک شونده (مثل سویا و تال) 3- غیر خشک شونده (مثل نارگیل، کرچک و پنبه دانه)تقسیم بندی می شوند
- کلرو کائوچو : کائوچو در طبیعت نئوپرن یا ایزوپرن با فرمول کلی پلیمری با زنجیره فنر مانند که خاصیت ارتجاعی دارد
ب- اپوکسی نوعی رزین ترموست ( گرما سخت) می باشد. و ازمشتقات پلی آمین می باشد.
بیس فنول A : از واکنش فنول و استون بدست می آید .
بیس فنول F : از واکنش تراکمی فنول یا کروزل با فرمالدئید بدست می آید
اپوکسی نووالاک : با افزایش زنجیره بیس فنول F تشکیل می شود
اپوکسی آلیفاتیک : از پلی ال های خطی ( آلیفاتیک) به واسطه با ویسکوزیته پایین به عنوان رقیق کننده فعال برای سیستم اپوکسی بدون حلال کاربرد دارد
اپوکسی سیکلو آلیفاتیک و هتروسیکلیک
فنوکسی : در زنجیره خود بجای 2 گروه اپوکسی انتهایی فنول دارد.
واکنش با عوامل شیمیایی و ایجاد تغییرات در رزین اپوکسی
واکنش با انیدرید پلی کربوکسیلیک اسید، اسید چرب وپلی فنول
ایجاد شبکه 3 بعدی و عرضی (Cross Link) با آمین ها ازطریق اضافه کردن هاردنر (سخت کننده) پلی آمین به رزین،کتیمین (واکنش یک کتون با پلی آمین)، رزول و آمینوپلاست، پلی ایزو سیانات و پلی سیلوکسان و کاتالیزور ( آنیونی یا کاتیونی)
نسبت اختلاط رزین و هاردنر در اپوکسی 2 جزئی براساس عدد پاپوکسی وآمین اکی والان تعیین می شود که برای داشتن پیوند مناسب رعایت نسبت اختلاط براساس دستورالعمل کارخانه های سازنده حاپز اهمیت است نسبت اختلاط در Pot life ( گیرش اولیه ) پس از 5 دقیقه واکنش گرمازا (شبیه به واکنش سیمان با آب در بتن) حالت ژل و فیلم سخت ایجاد می گردد، تأثیر دارد
کاربرد پوششهای اپوکسی
- پرایمر بتن اپوکسی
- بتونه اپوکسی (درزگیر) - ترکهای مویین بتن را پر می کند
- ملات و گروت اپوکسی
- رنگ اپوکسی با حلال
- رنگ اپوکسی بدون حلال
- ورنی اپوکسی
- چسب اپوکسی
- روکشهای اپوکسی
- پوششهای منعطف اپوکسی :
- مقاومت در برابر نفوذ آب
- مقاومت در برابر یخ زدگی
- چسبندگی خوب به سطح بتن
- انعطاف پذیری عالی
- پوششهای ضد لغزندگی اپوکسی : روی سطح آن سیلیس ریخته می شود.
پوشش اپوکسی با الیاف شیشه
پ- پلی اورتان
اجزا تشکیل دهنده : جز اول ایزو سیانات ها مثل تولوئن دی ایزو سیانات (TDI)، دی فنیل متان دی ایزو سیانات (MDI)، هگزا متیل دی ایزو سیانات (HDI) جز دوم ترکیبات دارای گروه عاملی OH جز سوم حلالها
طبقه بندی : پلی اورتان اصلاح شده با روغن (آلکید اورتان)
پلی اورتان هایی که با رطوبت هوا خشک می شوند،پلی اورتانهای کوره ای
پلی اورتان دو جزئی با کاتالیزور و پلی اورتان دو جزئی با پلی ال
ت- اتیل سیلیکات
روش1- تولید بچ به بچ 2- تولید پیوسته
ث- سیلیکونی
خواص : مقاومت حراتی بسیار عالی، مقاومت خوب در برابر شوکهای حرارتی، بسیار خوب در برابر عوامل خورنده محیط، کاهش میزان مصزف حلال در رنگ، خشک شدن سریع،کاربرد آسان، مقاومت بسیار خوب در برابر نورخورشید و رطوبت محیط، هماهنگی از نظر سختی و انعطاف رزین با سطح
ج- وینیلی
کوپلیمر وینیل کلراید و وینیل ایزو بوتیل اتر، پلی وینیل استات، پلی وینیل بوتیرال
چ- اکریلیک
اکریلیک ترموپلاست، اکریلیک ترموست، اکریل آمید، اکریلیک امولسیونی
ح- پلی استر
پلی استر اشباع، پلی استر غیر اشباع
- آمینو
اوره فرم آلدئید، ملامین فرمالدئید
خ -نیترو سلولز
برای نصب کاشی ضد اسید از رزین پلی استر، رنگدانه فلزی کبالت، پرکننده میکروسیلیس برای نفوذناپذیری پوشش ایروزیل به عنوان ماستیک یا بتونه، هاردنر پروکسی و درنهایت کاشی ضد اسید (Anti Acid Tile) استفاده شده است.
برخی از پوششهای صنعتی کاربردی عبارتند از
پوشش اکریلیکی، پوشش آلکیدی، پوشش قیری، پوششهای اپوکسی شامل کولتار، پوشش اصلاح شده با پلی آمید و پلی آمین، پوشش وینیل و استر اپوکسی، پوشش پلی استر، پوشش پلی اورتان، پوشش سیلیکون، پوشش وینیل و...
زیرسازی سطحی که قرار بود پوشش گردد با فرز به حد کاقی هموار گردید وپس از مالیدن پوشش با رولر و ترکیب و تختلاط رزین با حلال پوشش را در 2 و 3 لایه روی سطح کشیده و بایستی به زمان اجرا و Pot Life توجه گردد. در نهایت به بررسی عملکرد پوشش با آزمایشات شیمیایی می پردازیم.
خصوصیات پوشش کولتار اپوکسی
1- چسبندگی عالی به سطح
2- مقاومت عالی در برابر آب
3- مقاومت سایشی
4- سختی و نفوذ پذیری بالا
موارد مصرف : به عنوان لایه محافظ در برابر نفوذ آب، رطوبت در زیر خاک و آب دریا استفاده می شود. از قطران در آن استفاده شده و سطح را کاملاً عایق و مانع از نفوذ عوامل خورنده می گردد.
1- لوله ها و مخازن مدفون در خاک
2- سازه ها و اسکلتهای صنعتی و غوطه ور در آب
3- کارخانجات پتروشیمی و ایستگاههای تصفیه آب
4- ایستگاههای تصفیه فاضلاب و پوشش داخلی لوله های بتنی مسیر فاضلاب
5- پوشش داخلی مخزن تعادل کشتی
خصوصیات پرایمر دو جزیی پوشش اپوکسی پلی آمید

2-مقاومت عالی در برابر مواد شیمیایی و آب
3- ایجاد فیلمی با انعطاف پذیری خوب
4- مقاومت سایش بالا
5- خشک شدن سریع و تحمل ضربه عالی 1- چسبندگی عالی به سطح
موارد مصرف : در مناطقی که شرایط خوردگی درآها بسیار شدید نمی باشد به عنوان لایه میانی بر روی پرایمرهاس ضد خوردگی قوی استفاده می شود.
1-پالایشگاه ها و نیروگاه ها
2- سکوها و تأشیشات حفاری
3- تجهیزات و تأسیسات فلزی در مناطق صنعتی و دریایی در بالای خط آبخور
خصوصیات پوشش پلی اورتان بدون حلال با انعطاف پذیری بالا
این پوشش دو جزیی (Two Components) متشکل از پلی ایزوسیانات 2 و پلی ال3 می باشد.دارای پرایمر (آستری) بی رنگ بوده و دارای 2 لایه Top Coat زیتونی رنگ می باشد ضخامت لایه پوشش 3000 تا 5000 میکرون می باشد.
مقاوم در برابر اسیدها، آب دریا و آب مقطر
1- مقاوم در برابر پرتوهای رادیو اکتیو
2- مقاومت سایش و مقاومت مکانیکی بالا
3- جسبندگی عالی به سطوح
4- مقاوم در برابر شوکهای حرارتی
5- قابلیت ترمیم آسان
موارد مصرف : به عنوان پوشش محافظ خوردگی در دامنه وسیعی از بسترها با جنس متفاوت استفاده می شود
1-تأسیسات نیروگاههای حرارتی
2- لوله و خطوط انتقال (داخل و خارج )
3- تانکها و مخازن فلزی
4- تانکها و مخازن بتنی ( داخل و خارج)
5- قابل استفاده در محیطهای غوطه ور در گاز
6- قابل استفاده در محیطهای غوطه ور در آب
7- پلهای شنی و فلزی
8- استخرهای شنا و ذخیره آب
9- ژاکتها و تجهیزات مورد استفاده در محیطهای دریایی
10- پوششهای سطوح در تماس با مواد غذایی (داخل و خارج)
11-کفپوش سازه های فلزی و بتنی
12-درزگیرها و پوششهای مقاوم در برابر ضربه و سایش
13- پشت بامها و شیروانی ها و بالکن ها و . . .
خصوصیات لایه رویه اپوکسی بدون حلال
1-مقاومت بسیار عالی در برابر آب
2- سختی بالا
3- چسبندگی عالی به سطح
4- مقاومت مکانیکی بالا
5- مقاومت سایشی بالا
موارد مصرف : ازاین پوشش به عنوان لایه رویه برای تجهیزات به دور از تابش مستقیم خورشید (UV)
1-مخازن آب آشامیدنی 2- مخازن نگهداری روغنها و چربیها 3- محیطهای در تماس با مواد شیمیایی
1- بلوک نمونه یا شاهد ( بدون پوشش)
2 -کلیه پوششها
3-پوشش پلی اورتان (3000-5000 میکرون ضخامت)
4-پوشش کولتار اپوکسی بدون حلال (400-800 میکرون ضخامت)
5- پوشش کولتار اپوکسی با حلال (400-800 میکرون ضخامت)
6- پوشش اپوکسی پلی آمین (دارای پرایمر کرم رنگ و دو لایه نهایی با فام آبی)
نتیجه گیری :
با توجه به تنوع پوششهای مختلف و تبلیغات کارخانجات سازنده لزوم آشنایی با پوششهای اصلی، نحوه اجرا و ترکیب آنها ضروری به نظر می رسد و توجه به محیط اجرا، قیمت، دوام، سرعت و سهولت اجرا، زمان گیرش، کارایی، مقاومت شیمیایی و مقاومت در برابر تأثیر اشعه ماورای خورشید و طول موجهای مختلف در انتخاب پوشش مورد نظر مؤثر است.

http://www.omransazehparsian.blogfa.com
 

ebrahim110

عضو جدید
استفاده از خرده شیشه در بتن

استفاده از خرده شیشه در بتن

مقدار زیادی از شیشه های مصرف شده دوباره بازیافت می شوند و قسمتی نیز برای مصارف گوناگون از جمله سنگدانه های بتن به کار می روند .مقدار زیادی از این مواد شرط لازم برای بازیافت را فراهم نمی کنند و این مواد برای دفن فرستاده می شوند. فضای مورد استفاده برای دفن قابل توجه است و این فضا می تواند برای مصارف دیگری به کار برده شود. شیشه یک قلیایی غیر پایدار است که در محیط بتن میتواند باعث بوجود آمدن مشکلات ناشی از واکنش قلیایی – سیلیسی (ASR) شود. این ویژگی به عنوان یک مزیت در خرد کردن پودر شیشه و استفاده از آن به عنوان یک ماده پوزولانی در بتن استفاده شده است. رفتار دانه های بزرگ شیشه را در واکنش قلیایی در آزمایشگاه نمی توان با رفتار واقعی پودر شیشه در طبیعت برابر دانست. تجربه مزایای واکنش پوزولانی شیشه را در بتن مشخص کرده است. می توان در بعضی از مخلوطهای بتن تا %30 وزن سیمان پودر شیشه اضافه کرد و به مقاومت مناسبی دست یافت.
مقدمه
شیشه در انواع مختلفی تولید می شود (بسته بندی ، شیشه صاف ، حباب لامپها ، لامپ تلویزیونها و ...). اما همه این وسایل عمر مشخصی دارند و نیاز به استفاده دوباره و بازیافت آنها به منظور جلوگیری از مشکلات زیست محیطی که ناشی از ذوب آنها و یا دفن ایجاد می شود احساس می شود.
بازیافت شیشه های مصرف شده بصورت تجاری به محلهای مخصوص طراحی شده برای بازیافت یا دفن و یا جمع آوری کربنات و سپس حمل آنها به محلهای دپو می روند. بزرگترین هدف قوانین زیست محیطی تا خد امکان کم کردن ضایعات شیشه و بردن آنها به محلهای دفن و تجزیه شیمیایی آنها به طور اقتصادی است. شیشه یک ماده منحصر به فرد است که می تواند بارها و بارها بدون تغییر در خواصش بازیافت شود. به عبارت دیگر یک بطری می تواند ذوب شده و دوباره به بطری تبدیل شود بدون اینکه تغییر زیادی در خواصش ایجاد شود.

بیشتر شیشه های تولیدی بصورت بطری هستند و مقدار زیادی از شیشه های جمع آوری شده دوباره برای تولید بطری به کار می روند. اثر این پروسه به شیوه جمع آوری و مرتب کردن شیشه ها با رنگهای مختلف وابسته است. اگر رنگهای مختلف شیشه قابل جدا کردن باشند می توان از آنها جهت تولید شیشه با رنگهای مشابه استفاده کرد. ولی وقتی که شیشه با رنگهای متفاوت با هم مخلوط شدند، برای تولید بطری نامناسب می شوند و باید آنها را در مصارف دیگری به کار برد و یا دفن کرد. آقای ریندل (Rindl) به چند مورد از استفاده های غیر بطری شیشه اشاره می کند که شامل : سنگدانه روسازی راه ،پوشش آسفالت ، سنگدانه بتن ، مصارف ساختمانی ( کاشی شیشه ای ، پانلهای دیوار و ...) ، فایبر گلاس ،شیشه های هنری ،کودهای شیمیایی ،محوطه سازی ،سیمان هیدرولیکی و بسیاری دیگر. استفاده از بتن در سنگدانه های بتن در این مقاله مورد بررسی قرار می گیرد. نگرانی بزرگی که در استفاده از شیشه در بتن وجود دارد واکنش شیمیایی مابین ذرات سیلیس اشباع شیشه و قلیاییهای مخلوط بتن است که به واکنش سیلیسی – قلیایی(Alkali Silica Reaction ASR) معروف است. این واکنش می تواند برای پایداری بتن بسیار خطرناک باشد. به همین منظور باید پیشگیری مناسبی در جهت کمتر کردن اثر این واکنش انجام شود. پیشگیری مناسب می تواند با استفاده از یک ماده پوزولانی مناسب مانند :خاکستر هوایی ،سرباره کوره آهن گدازی و یا میکرو سیلیس (Silica Fume SF) با نسبت مناسب در مخلوط بتن انجام گیرد. حساسیت شیشه به مواد قلیایی این حدس را بوجود می آورد که شیشه درشت و فیبر شیشه می تواند اثر واکنش ASR را کم و یا محو کند. اگرچه این تصور نیز وجود دارد که پودر شیشه می تواند خواص پوزولانی (مانند مواد ذکر شده در بالا) از خود نشان دهد و از اثرات و انجام واکنش ASR توسط دانه های شیشه جلوگیری کند.

برای مثال پودر شیشه آهکی سیلیکاتی رد شده از الک 100# در جهت کاهش ASR است. همچنین مرکز زمین پاک واشنگتن بیان می کند که دانه های ریز (پودر) می توانند بتن را بوسیله آزمایش ASR تضعیف کنند. همچنین کارهای انجام شده توسط آقای Samtur بر روی این موضوع بیان می کند که پودر شیشه رد شده از الک 200# می تواند مانند یک ماده پوزولانی و در جهت کاهش اثر واکنش سنگدانه ها (ASR) عمل کند. همچنین آقای Pattengil نیز به همین نتایج دست یافت. ذرات شیشه باعث انبساط زیادی می شوند. اگرچه ذرات کوچکتر از mm 0.25 در آزمایشگاه باعث هیچ گونه انبساطی در بتن نگردیدند.مشخص شد که ذرات شیشه حدود mm 1.2 باعث بیشترین انبساط ملات در بین دانه های با اندازه mm 4.75 تا mm 0.15 می شوند.همچنین این نتیجه حاصل شد که بیشترین انبساط وقتی حاصل می شود که 100% ذرات شیشه بصورت سنگدانه باشند و اگر شیشه های سبز بیش از 1% اکسید کرم داشته باشند اثر مثبتی بر واکنش ASR دارند. mm1.5

پودر شیشه بر کم کردن اثر واکنش ASR در آزمایش تسریع شده ملات مانند اثر خاکستر بادی و میکروسیلیس و سرباره موثر است. این نشان می دهد که پودر شیشه می تواند انبساط ناشی از ASR را در سنگدانه های حساس و شیشه های دانه ای متوقف کند. از مطالب بالا نتیجه گیری می شود که شیشه می تواند به سه صورت در بتن استفاده شود: درشت دانه ریز دانه پودر شیشه درشت دانه و ریز دانه می توانند باعث واکنش ASR در بتن شوند. اما پودر شیشه می تواند اثر ASR آنها را کاهش دهد. در بعد تجاری بسیار به صرفه است که پودر شیشه به جای سیمان مصرف شود تا اینکه شیشه به عنوان سنگدانه در بتن مصرف شود. پودر پودر شیشه یک ماده با ارزش است که از شیشه هایی که برای بازیافت مناسب نیستند به دست می آید. در قسمتهای بعدی اطلاعاتی در مورد استفاده از شیشه در بتن در سه حالت ذکر شده ارائه می گردد. کارهای آزمایشگاهی سه مورد از کاربردهای شیشه در بتن در برنامه تحقیق ARRB مشخص شده است. اینها شامل : شیشه های درشت دانه شیشه های ریزدانه و پودر شیشه است. حدود ذرات برای هر شاخه در زیر ذکر شده است. شیشه درشت دانه mm 12-4.75 CGA شیشه ریز دانه mm4.7-0.15 FGA پودر شیشه کوچکتر از mm0.01 GLP ترکیب شیمیایی تولیدات یک تیپ شیشه مشابه هستند.

شیشه های درشت دانه و ریز دانه جهت جایگزینی حدود اندازه های مشابه سنگدانه های طبیعی به کار می روند. پودر شیشه به عنوان یک ماده پوزولانی مورد مطالعه قرار می گیرد(مانند کاربرد خاکستر هوایی و میکروسیلیس). مواد طبیعی استفاده شده در این کار شامل ماسه طبیعی بتن ویکتوریا و سنگ شکسته طبیعی بازالتی بود. یکسری سنگدانه فعال خاکستری از NSW برای تشخیص اثر پودر شیشه بر توقف انبساط AAR (Alkali Aggregate Reaction) مصرف شد.



3- سنگدانه های درشت و ریز شیشه در بتن تاثیر خصوصیات فیزیکی سنگدانه های شیشه ای مانند اندازه آنها در مخلوط بتن مشخص است. شیشه بنابر طبیعت اشباع از سیلیس و شکل بی ریخت ملکولی آن به حمله شیمیایی مخیط قلیایی که در بتن هیدراته شده ایجاد می شود حساس است. این حمله شیمیایی می تواند تولید تغییر شکلهای وسیعی بر ژل AAR بتن داشته باشد که توسعه پیدا می کند و اگر پیشگیریهای مناسب در فرمولاسیون طرح اختلاط لحاظ نشود باعث ترک خوردن زودرس بتن می شود. طبیعت واکنش شیشه در کاربرد آن در بتن بسیار اهمیت دارد. برای مثال بعضی از سنگدانه های طبیعی می توانند وقتی که به مقدار کمی در بتن استفاده می شوند باعث انبساط بیش از اندازه بتن شوند و بعضی دیگر به صورت 100% در بتن استفاده می شوند. واکنش سنگدانه ها بوسیله آزمایش تسریع شده استوانه ملات (AMBT) مشخص می شود (ASTM C1260). نتایج آزمایش AMBT نشان می دهد که مخلوط با شیشه بیشتر در ملات انبساط بیشتری نیز داشته است. شرط برای این آزمایش این است که انبساط کمتر از 0.1% در عمر 21 روزه نشان دهنده سنگدانه غیر فعال و بیش از 0.1% در عمر 10 روزه نشان دهنده سنگدانه فعال است. انبساط کمتر از 0.1% در 10 روز ولی بیش از 0.1% در 21 روز نشان دهنده سنگدانه با واکنش آهسته است. بر اساس این شرط استفاده از بیش از 30% شیشه در بتن ممکن نیست اثرات زیانباری داشته باشد. (مخصوصا اگر قلیاییهای بتن کمتر از kg3 Na2O در یک متر مکعب باشد). بتنهای با قلیایی بیشترممکن است انبساطهای بیشتری را بوجود بیاورند. نتیجه نشان می دهد که اندازه های شیشه زیر mm0.3 اختمال کمی برای انبساط خطرناک دارند ولی اندازه های بزرگتر ازممکن است باعث انبساطهای قابل ملاخظه ای شوند. بنابراین اندازه انبساط وابسته به میزان شیشه موجود، اندازه ذرات و میزان قلیاییهای مخلوط است.این نتایج نشان می دهد که شیشه می تواند ژلAAR تولید کند و اگر اندازه ذرات به اندازه کافی کوچک شود می تواند به عنوان یک ماده پوزولانی عمل کند. mm0.6
مشخص شده است که فعالیت سنگدانه ها و انبساط حاصله می تواند با بکار بردن میزان مناسب از مواد با خاصیت سیمانی شدن مانند میکرو سیلیس و خاکستر هوایی کنترل شود. همچنین پودر شیشه ریز می تواند بصورت مشابه عمل کند. با توجه به کاربرد سنگدانه های ریز و درشت که مورد بررسی قرار گرفتند مخلوطهای آزمایشی با توجه به میزان سنگدانه های ریز و درشت مناسب در مخلوط بتن گسترش یافته اند. آزمایشات به سمت تولید بتن با حدود Mpa32 تحمل پیش رفتند. مخلوط محتوی Kg/m3255 سیمان و Kg/m3 85 خاکستر هوایی بود. میزان شن و ماسه به ترتیب Kg/m3 1080 و Kg/m3780 مناسب به نظر می رسید.
بعد از تعدادی سعی و خطا فرمولی رضایتبخش به سمت ویژگیهای مناسب بتن تازه جهت این مخلوط پیدا شد که به صورت زیر است: این موضوع از مقاومت بتنها آشکار است که این مخلوطها به راحتی به مقاومت Mpa32 رسیده و ختی از آن عبور می کنند( در حالی که از مقدار زیادی شیشه بازیافتی استفاده شده است). برای مصارف غیر سازه ای که مقاومت کمتری مورد نیاز است از همین مخلوط بدون کاهش دهنده (روان کننده) آب می توان استفاده کرد. با توجه به وجود 25% خاکستر هوایی در مخلوط ،بتن از واکنش ASR نیز محفوظ است. جمع شدگی ناشی از خشک شدن این مخلوطها خوب و زیر مرز 0.075% که توسط استاندارد استرالیا معین شده ، بود. با توجه به مطالب بالا به این نتیجه می رسیم که مقدرا حتی بیش از 50% از هر کدام از درشت دانه یا ریز دانه می توانند در مخلوط بتن سازه ای یا غیرسازه ای مصرف شوند. اگرچه دیگر پارامترهای مهندسی این مخلوط ها نیاز به تحقیق و بررسی بیشتری دارند.

4- اثرات پودر شیشه بر مقاومت ملات تقسیم اندازه ذرات پودر شیشه (GLP) بصورت زیر است: اندازه ذرات کوچکتر از 5 میکرون 5-10 میکرون 10-15 میکرون بزرگتر از 15 میکرون درصد 39 49 4.4 7.6 سطح مخصوص پودر شیشه m2/Kg 800بود که تقریبا دو برابر بیشتر سیمانهای موجود است. در مورد جایگزینی سیمان ممکن است کاهش مقاومت 28 روزه پیش بیاید که یک اثر کوتاه مدت است و خواص پوزولانی را آشکار می کند. همچنین خاکستر هوایی نیز وقتی که با میزان مشابه سیمان جایگزین می شود اثری مشابه تولید می کند. مقاومتهای طولانی تر با میکرو سیلیس مورد مطالعه قرار گرفتند. این سری از نمونه ها تشکیل شده بود از : نمونه کنترلی که ریزدانه فعال خاکستری داشت، نمونه با 10% میکروسیلیس ، با 20% پودر شیشه ، با 30% پودر شیشه که با سیمان مساوی جایگزین شده بودندو در یک نمونه نیز 30% پودر شیشه جایگزین سنگدانه ها شده بود. سه نتیجه نشان می دهد که جایگزینی 10% بخار سیلیس مقاومت بیشتری از جایگزینی GLP دارد. ولی همچنین نشان می دهد نمونه ملاتی که حاوی GLP باشد برای مدت طولانی تری رشد مقاومت خواهد داشت (به خاطر واکنش پوزولانی). باید توجه شود که وقتی 30% ماسه با پودر شیشه جایگزین می شود مقاومت 90 روزه برابر مقاومت مخلوط حاوی میکروسیلیس است. برای بررسی اثر مثبت جایگزینی پودر شیشه به جای سنگدانه ها دو آزمایش اضافی بر روی مکعبهای ملات انجام شد (270 روز عمل آوری شده).
در یک سری از نمونه ها 20% از سیمان با پودر شیشه جایگزین شد و در سری بعدی به علاوه 20% سیمان 10% از سنگدانه ها نیز جایگزین شدند. این جایگزینی به صرفه است (احتمالا به خاطر بهبود دانه بندی و واکنش پوزولانی). همچنین باید توجه شود که مقاومت مخلوط با 20% شیشه به جای سیمان و 10% به جای سنگدانه ها به مقاومت مخلوط محتوی میکرو سیلیس رسیده و از آن تجاوز می کند. ظاهرا اثرات سود آور مقایسه شده میکرو سیلیس بر مقاومت نسبت به پودر شیشه بصورتی زیاد در این آزمایش افزایش یافته اند. زیرا مخلوط با میکروسیلیس حاوی 90% سیمان است ولی مخلوطهای با پودر شیشه حاوی 80 و 70% سیمان هستند. برای مقایسه مبتنی بر میزان سیمان مساوی ، آزمایش مقاومت ملات بر روی دو سری از نمونه ها که حاوی شیشه دانه بندی شده به جای ریزدانه (80% شیشه و 20% ماسه طبیعی) که 30% از سیمان نیز با مواد دیگر جایگزین شده بود انجام شد. در یک نمونه 30% از سیمان با پودر شیشه جایگزین شد و در دیگری با مخلوطی از 10% میکروسیلیس و 20% سنگ بازالتی غیر پوزولانی نرم و ساییده شده. در این روش میزان سیمان هردو نمونه مساوی است. نتایج مقاومت برای هر دونمونه تقریبا یکسان است. باید به این نکته توجه شود که مقاومتهای نشان داده شده به علت تفاوت کلی در سنگدانه های ملات اساسا قابل مقایسه نیستند.

5- اثر پودر شیشه بر انبساط ملات دانه های در حد ماسه شیشه می توانند باعث واکنش قلیایی سنگدانه ها بصورت خطرناکی باشند ( مخصوصا در میزان بالای شیشه در آزمایش تسریع شده ملات). بنابر این 6 سری نمونه های ملات محتوی 80% دانه های شیشه فعال ساخته شد. نمونه کنترلی که حاوی سنگدانه و سیمان معمولی بود، و در 5 نمونه دیگر سیمان با 5% و 10% میکروسیلیس و 10 و20 و 30% پودر شیشه جایگزین شده بودند.
این ترکیبات (هردو حالت GLPو میکروسیلیس) در کاهش انبساط واکنش AAR موثر هستند به شرط اینکه به اندازه مناسب مصرف شوند (10%میکروسیلیس و <20%GLP). این نتایج نشان می دهد که نقش 20 و 30% GLP در توقف واکنش AAR بیشتر از 10% میکروسیلیس است. با وجود مقدار زیاد کربنات سدیم در شیشه (حدود13%) این نکته مهم است که خود دانه های پودر شیشه باعث انبساط طولانی مدت ملات نشوند و یا باعث تحریک سنگدانه های فعال مخلوط نباشند. آزمایش طولانی مدت استوانه ملات در 38 درجه سانتیگراد و 100% اشباع با سنگدانه های فعال و غیر فعال و با میزان جایگزینی مساوی سیمان (مانند آنچه در بالا گفته شد) انجام شد. انبساط کمتر از 0.1% در یک سال نشان دهنده ترکیب بی ضرر است. وقتی سنگدانه ها غیر فعالند خود GLP باعث انبساط مخلوط نمی شود. اما وقتی سنگدانه ها فعال هستند وجود 30%GLP باعث تحریک واکنش سنگدانه های خیلی حساس هم نمی شود. همچنین وقتی که سیمان جایگزین نشود و 30% GLP به جای سنگدانه استفاده شود باعث انبساط خطرناک استوانه ملات نمی شود. اطلاعات نشان می دهد که GLP می تواند بدون ترس از اثرات زیانبار آن استفاده شود.

6 -پودر شیشه در بتن اثر پودر شیشه بر انبساط بتن مشخص شد. یکسری سنگدانه خیلی فعال در منشور بتن (بر اساس ASTM C1293) استفاده شد.انبساط خطرناک در این آزمایش 0.03% تا 0.04% در یک سال است. 40% GLP که پتانسیل رها سازی قلیایی بیشتری از 30%GLP دارد می تواند تا 80% از انبساط ناشی از سنگدانه های فعال جلوگیری کند. برای سنگدانه های کمتر فعال نیز انبساط متوقف می شود. این امر نشان دهنده اثر مثبت GLP در بهبود دوام بتن است. وقتی که نسبتهای متفاوتی از GLP با سنگدانه های غیر فعال در بتن با قلیایی بالاتر (Na2O/m3 5.8) استفاده می شوند خود شیشه نیز باعث انبساط خطرناکی در مخلوط نمی شود. نتیجه آخر اینکه GLP اثر زیان آوری بر مخلوط بتن ندارد.
اثر پودر شیشه بر خزش و مقاومت بتن به تعداد نمونه ها ولی با قلیایی کمتر برای تعیین خزش خشک شدن بتن با مقادیر مختلف GLP و میکروسیلیس استفاده شد. اطلاعات طولانی مدت نشان می دهد که خزش خشک شدگی مخلوطهای متفاوت زیاد نیست و به راختی استانداردهای AS3600 را برآورده می کند.(کمتر از 0.075% در 56 روز).

به نظر می رسد که اگرچه مخلوط های محتوی GLP مقاومت اولیه کمتری دارند (با توجه به سیمان کمتر) ولی به رشد مقاومت خود در محیط نمناک ادامه می دهند و به مقاومت نمونه کنترلی نزدیک می شوند. همچنین وقتی که GLP با ماسه جایگزین می شود مقاومت بصورت چشمگیری از نمونه کنترلی بیشتر است. رشد ممتد مقاومت به وضوح اثر مثبت واکنش پوزولانی را در بتن نمایان می سازد.
7-بافت میکروسکوپی ملات محتوی پودر شیشه نمونه های ملات محتوی GLP که 270 روز در محیط نمناک بودند بوسیله میکروسکوپ الکترونی اسکن شدند. این نمونه های ملات نشان دهنده خصوصیات بتنهای با عمر مشابه نیز بودند. در هر دو مورد شکست سطح نمونه ملات حاکی از بافت میکروسکوپی متراکم بود.

8- نتیجه اطلاعات موجود در این مقاله نشان می دهد که پتانسیل زیادی در بازیافت شیشه و مصرف آن در حالتهای پودر ،ریزدانه و درشت دانه وجود دارد. این نتیجه نهایی می تواند حاصل شود که می توان با جایگزینی شیشه با مواد گرانقیمت ری مانند میکروسیلیس یا خاکسترهوایی و یا حتی سیمان در هزینه ها صرفه جویی کرد.
GLP
مصرف پودر شیشه در بتن می تواند از انبساط ASR در حضور سنگدانه های فعال جلوگیری کند. همچنین بهبود مقاومت پودر شیشه در ملات و بتن چشمگیر است. آزمایشات بافت میکروسکوپی نشان دهنده این است که پودر شیشه می تواند یک مخلوط متراکم تر تولید کند و خصوصیات دوام بتن را بهبود ببخشد. این نتیجه که 30% پودر شیشه می تواند به جای سیمان یا سنگدانه در بتن (بدون نگرانی از اثرات زیانبار طولانی مدت) جایگزین شود حاصل شد. بیشتر از 50% از هر دو (پودر شیشه یا سنگدانه شیشه ای) می تواند در بتن با رده مقاومت Mpa 32 باعث بهبود قابل قبول مقاومت بتن شود.

http://www.omransazehparsian.blogfa.com
 

ebrahim110

عضو جدید
جلوه دادن به روکش های بتنی

جلوه دادن به روکش های بتنی

روکش بتن Quikrete یک مخلوط خاص از سیمان پرتلند و شن و یک پلیمر معتدل ساز و رنگهای افزودنی است که برای کاهش میزان خسارات مواد تعمیری و بازسازی کردن ظریف و بی عیب و نقص نما به کار می رود. روکش بتن یک پوشش با دوام و مقاوم که بمنظور مقاوم سازی پیاده رو ها و برخی خیابان ها در مقابل عبور و مرور عابرین پیاده و وسائط نقلیه طراحی شده است و راهی مقرون به صرفه برای تعویض بتن های سنگی فرسوده و قدیمی می باشد. هر فردی می تواند به تنهایی از این بتن استفاده کند و در موارد پروژه های عظیم شهری هم می بایست برای این کار با پیمانکاران قرارداد منعقد کرد. موارد استفاده از این بتن ها در راههای اختصاصی و مدخل های ورودی، دالان ها و گذرگاه های سرپوشیده، پیاده روها، حیاط خلوت و گلخانه ها از این روکش بتن می توان در موارد جزئی و تعمیرات و یا در موراد کلان مانند تک لبه هاو جدول های کناره خیابان ها و یا ساخت پله ها استفاده کرد.

زمان خشک شدن
روکش کردن با این نوع بتن می بایست 6 ساعت قبل از عبور عابرین پیاده و 24 ساعت قبل از عبور و مرور وسائط نقلیه موتوری پایان پذیرد. در آب و هوای سرد زمان بیشتری برای این کار لازم است. از نفوذ آب و بارش باران بر روی روکش تا 6 ساعت پس از پایان کار جلوگیری کنید. تنها هنگام بارندگی های ناگهانی روی آن را بپوشانید و در غیر این صورت هیچ نیازی به پوشاندن روی روکش وجود ندارد.

در صورت نا مساعد بودن وضعیت آب و هوایی
هوای سرد: در دمای پایین تر از 50 درجه فارنهایت(10 درجه سانتیگراد) این کار را انجام ندهید. در آب و هوای نیمه سرد و یا خنک از آب نسبتا گرم با دمای 120 درجه فارنهایت(50 درجه سانتیگراد) برای تسریع روند کار استفاده کنید.

هوای گرم: هنگامی که هوا گرم است در محل های سایه دار و در ساعات خنک روز کار کرده و در مخلوط از آب سرد استفاده کنید.


لایه های ضخیم: برای ایجاد لایه های ضخیم بعد از اولین غلتک بر روی روکش، از لایه های نازک روکش بتن و یا از لایه های از پیش ساخته شده استفاده کنید.

--در لایه های سطحی از تخته ها و ابزار سیمان کاری استفاده کنید.











ابزار و مواد لازم
بتن Quikrete
شستشوگر با فشار آب بالا
ماله فولادی
غلتک صنعتی
دریل و پاروچه برای مخلوط کردن
سطل برای مخلوط کردن مواد
چکش
اسکنه
دستکش
عینک
جارو
آماده کردن سطوح: بتن های قدیمی باید با دقت تمیز شوند تا از چسبیدن روکش بتن Quikrete به سطح قدیمی مطمئن شویم. برای این کار می بایست از شستشوگری با فشار آب بالا استفاده کرد تا بتن ها کاملا تمیز شوند.

تعویض: بخش پیشنهاد شده کار برای مکان هایی که بیشتر از 5/13 متر مربع مساحت دارند، می باشد. کنترل محل های اتصال و میزان فراخی اتصال معمولا برای تعیین محدوده کاری می تواند لازم می باشد. همچنین محافظت کامل از آنها باید صورت گیرد. از مکنده هوا و یا مجرای آب برای جلوگیری از ریختن روکش بتن در مفصل ها و درزها استفاده کنید. محل هایی را که با روکش بتن پوشانده نشده است را بپوشانید.

تعمیر زیرسازی سطوح: ضخامت لایه های بتن که به کار برده می شود بستگی به میزان تراشیدن محل دارد. برای روکاری مجدد از مخلوط 7 پیمانه بتن و 1 پیمانه آب استفاده کنید. پس از آن اجازه دهید لایه ای که به عنوان روکاری و برای تعمیر استفاده شده کاملا سفت شود و سپس لایه جدید سطح را اضافه کنید.

مخلوط کردن: در یک سطل 5 گالنی(19 لیتری) مواد را با استفاده از دریل5/0 اینچی(12میلیمتری) و یک پاروچه مخلوط کنید و برای جلوه بیشتر روکش بتن می توانید به آن رنگ و یا پوشش ساروج و یا ملاط رنگی و آب اضافه کنید و از راهنمایی های درج شده بر روی بطری پیروی کنید.

کاربرد محصول بر روی سطوح قدیمی و کهنه: سطح مورد نظر را خیس کنید سپس آبهایی که در محل جمع شده را از روی سطح بزدایید. سپس مواد را بر روی سطح بپاشید و با غلتک آن را صاف کنید. از غلتک برای ساییدن اجسام بر روی سطح مورد نظر استفاده کنید. با استفاده از یک برس نازک زائده ها را از گوشه ها و لبه ها پاک کنید و به مدت 5 دقیقه روی سطح را جارو کنید. برای حصول نتیجه مطلوب، جارو را بصورت یکنواخت و پی در پی در تمام سطوح به طور عرضی بکشید.

بافت ظاهری روکش: با استفاده از غلتک می توانید سطح روی روکش را کاملا صاف و مسطح کنید. این کار را می توانید با استفاده از ماله و یا تی هم انجام دهید که البته کیفیت سطح با استفاده از علتک مطلوب تر خواهد بود.
طول مدت انجام کار: طول مدت انجار کار با استفاده از بتن Quikrete حدود 20 دقیقه است که در این حالت می بایست دمای هوا 73 درجه فارنهایت و یا 23 درجه سانتیگراد باشد. در دماهای بالاتر این زمان کاهش پیدا می کند.

http://www.omransazehparsian.blogfa.com
 

sarbaz121

عضو جدید
استفاده از خرده شیشه در بتن

استفاده از خرده شیشه در بتن

استفاده از خرده شیشه در بتن


مقدار زیادی از شیشه های مصرف شده دوباره بازیافت می شوند و قسمتی نیز برای مصارف گوناگون از جمله سنگدانه های بتن به کار می روند .مقدار زیادی از این مواد شرط لازم برای بازیافت را فراهم نمی کنند و این مواد برای دفن فرستاده می شوند. فضای مورد استفاده برای دفن قابل توجه است و این فضا می تواند برای مصارف دیگری به کار برده شود. شیشه یک قلیایی غیر پایدار است که در محیط بتن میتواند باعث بوجود آمدن مشکلات ناشی از واکنش قلیایی سیلیسی (ASR) شود. این ویژگی به عنوان یک مزیت در خرد کردن پودر شیشه و استفاده از آن به عنوان یک ماده پوزولانی در بتن استفاده شده است. رفتار دانه های بزرگ شیشه را در واکنش قلیایی در آزمایشگاه نمی توان با رفتار واقعی پودر شیشه در طبیعت برابر دانست. تجربه مزایای واکنش پوزولانی شیشه را در بتن مشخص کرده است. می توان در بعضی از مخلوطهای بتن تا %30 وزن سیمان پودر شیشه اضافه کرد و به مقاومت مناسبی دست یافت.
مقدمه
شیشه در انواع مختلفی تولید می شود (بسته بندی ، شیشه صاف ، حباب لامپها ، لامپ تلویزیونها و ...). اما همه این وسایل عمر مشخصی دارند و نیاز به استفاده دوباره و بازیافت آنها به منظور جلوگیری از مشکلات زیست محیطی که ناشی از ذوب آنها و یا دفن ایجاد می شود احساس می شود.
بازیافت شیشه های مصرف شده بصورت تجاری به محلهای مخصوص طراحی شده برای بازیافت یا دفن و یا جمع آوری کربنات و سپس حمل آنها به محلهای دپو می روند. بزرگترین هدف قوانین زیست محیطی تا خد امکان کم کردن ضایعات شیشه و بردن آنها به محلهای دفن و تجزیه شیمیایی آنها به طور اقتصادی است. شیشه یک ماده منحصر به فرد است که می تواند بارها و بارها بدون تغییر در خواصش بازیافت شود. به عبارت دیگر یک بطری می تواند ذوب شده و دوباره به بطری تبدیل شود بدون اینکه تغییر زیادی در خواصش ایجاد شود.
بیشتر شیشه های تولیدی بصورت بطری هستند و مقدار زیادی از شیشه های جمع آوری شده دوباره برای تولید بطری به کار می روند. اثر این پروسه به شیوه جمع آوری و مرتب کردن شیشه ها با رنگهای مختلف وابسته است. اگر رنگهای مختلف شیشه قابل جدا کردن باشند می توان از آنها جهت تولید شیشه با رنگهای مشابه استفاده کرد. ولی وقتی که شیشه با رنگهای متفاوت با هم مخلوط شدند، برای تولید بطری نامناسب می شوند و باید آنها را در مصارف دیگری به کار برد و یا دفن کرد. آقای ریندل (Rindl) به چند مورد از استفاده های غیر بطری شیشه اشاره می کند که شامل : سنگدانه روسازی راه ،پوشش آسفالت ، سنگدانه بتن ، مصارف ساختمانی ( کاشی شیشه ای ، پانلهای دیوار و ...) ، فایبر گلاس ،شیشه های هنری ،کودهای شیمیایی ،محوطه سازی ،سیمان هیدرولیکی و بسیاری دیگر. استفاده از بتن در سنگدانه های بتن در این مقاله مورد بررسی قرار می گیرد. نگرانی بزرگی که در استفاده از شیشه در بتن وجود دارد واکنش شیمیایی مابین ذرات سیلیس اشباع شیشه و قلیاییهای مخلوط بتن است که به واکنش سیلیسی قلیایی(Alkali Silica Reaction ASR) معروف است. این واکنش می تواند برای پایداری بتن بسیار خطرناک باشد. به همین منظور باید پیشگیری مناسبی در جهت کمتر کردن اثر این واکنش انجام شود. پیشگیری مناسب می تواند با استفاده از یک ماده پوزولانی مناسب مانند :خاکستر هوایی ،سرباره کوره آهن گدازی و یا میکرو سیلیس (Silica Fume SF) با نسبت مناسب در مخلوط بتن انجام گیرد. حساسیت شیشه به مواد قلیایی این حدس را بوجود می آورد که شیشه درشت و فیبر شیشه می تواند اثر واکنش ASR را کم و یا محو کند. اگرچه این تصور نیز وجود دارد که پودر شیشه می تواند خواص پوزولانی (مانند مواد ذکر شده در بالا) از خود نشان دهد و از اثرات و انجام واکنش ASR توسط دانه های شیشه جلوگیری کند.
برای مثال پودر شیشه آهکی سیلیکاتی رد شده از الک 100# در جهت کاهش ASR است. همچنین مرکز زمین پاک واشنگتن بیان می کند که دانه های ریز (پودر) می توانند بتن را بوسیله آزمایش ASR تضعیف کنند. همچنین کارهای انجام شده توسط آقای Samtur بر روی این موضوع بیان می کند که پودر شیشه رد شده از الک 200# می تواند مانند یک ماده پوزولانی و در جهت کاهش اثر واکنش سنگدانه ها (ASR) عمل کند. همچنین آقای Pattengil نیز به همین نتایج دست یافت. ذرات شیشه باعث انبساط زیادی می شوند. اگرچه ذرات کوچکتر از mm 0.25 در آزمایشگاه باعث هیچ گونه انبساطی در بتن نگردیدند.مشخص شد که ذرات شیشه حدود mm 1.2 باعث بیشترین انبساط ملات در بین دانه های با اندازه mm 4.75 تا mm 0.15 می شوند.همچنین این نتیجه حاصل شد که بیشترین انبساط وقتی حاصل می شود که 100% ذرات شیشه بصورت سنگدانه باشند و اگر شیشه های سبز بیش از 1% اکسید کرم داشته باشند اثر مثبتی بر واکنش ASR دارند. mm1.5
پودر شیشه بر کم کردن اثر واکنش ASR در آزمایش تسریع شده ملات مانند اثر خاکستر بادی و میکروسیلیس و سرباره موثر است. این نشان می دهد که پودر شیشه می تواند انبساط ناشی از ASR را در سنگدانه های حساس و شیشه های دانه ای متوقف کند. از مطالب بالا نتیجه گیری می شود که شیشه می تواند به سه صورت در بتن استفاده شود: درشت دانه ریز دانه پودر شیشه درشت دانه و ریز دانه می توانند باعث واکنش ASR در بتن شوند. اما پودر شیشه می تواند اثر ASR آنها را کاهش دهد. در بعد تجاری بسیار به صرفه است که پودر شیشه به جای سیمان مصرف شود تا اینکه شیشه به عنوان سنگدانه در بتن مصرف شود. پودر پودر شیشه یک ماده با ارزش است که از شیشه هایی که برای بازیافت مناسب نیستند به دست می آید. در قسمتهای بعدی اطلاعاتی در مورد استفاده از شیشه در بتن در سه حالت ذکر شده ارائه می گردد. کارهای آزمایشگاهی سه مورد از کاربردهای شیشه در بتن در برنامه تحقیق ARRB مشخص شده است. اینها شامل : شیشه های درشت دانه شیشه های ریزدانه و پودر شیشه است. حدود ذرات برای هر شاخه در زیر ذکر شده است. شیشه درشت دانه mm 12-4.75 CGA شیشه ریز دانه mm4.7-0.15 FGA پودر شیشه کوچکتر از mm0.01 GLP ترکیب شیمیایی تولیدات یک تیپ شیشه مشابه هستند.
شیشه های درشت دانه و ریز دانه جهت جایگزینی حدود اندازه های مشابه سنگدانه های طبیعی به کار می روند. پودر شیشه به عنوان یک ماده پوزولانی مورد مطالعه قرار می گیرد(مانند کاربرد خاکستر هوایی و میکروسیلیس). مواد طبیعی استفاده شده در این کار شامل ماسه طبیعی بتن ویکتوریا و سنگ شکسته طبیعی بازالتی بود. یکسری سنگدانه فعال خاکستری از NSW برای تشخیص اثر پودر شیشه بر توقف انبساط AAR (Alkali Aggregate Reaction) مصرف شد.
3- سنگدانه های درشت و ریز شیشه در بتن تاثیر خصوصیات فیزیکی سنگدانه های شیشه ای مانند اندازه آنها در مخلوط بتن مشخص است. شیشه بنابر طبیعت اشباع از سیلیس و شکل بی ریخت ملکولی آن به حمله شیمیایی مخیط قلیایی که در بتن هیدراته شده ایجاد می شود حساس است. این حمله شیمیایی می تواند تولید تغییر شکلهای وسیعی بر ژل AAR بتن داشته باشد که توسعه پیدا می کند و اگر پیشگیریهای مناسب در فرمولاسیون طرح اختلاط لحاظ نشود باعث ترک خوردن زودرس بتن می شود. طبیعت واکنش شیشه در کاربرد آن در بتن بسیار اهمیت دارد. برای مثال بعضی از سنگدانه های طبیعی می توانند وقتی که به مقدار کمی در بتن استفاده می شوند باعث انبساط بیش از اندازه بتن شوند و بعضی دیگر به صورت 100% در بتن استفاده می شوند. واکنش سنگدانه ها بوسیله آزمایش تسریع شده استوانه ملات (AMBT) مشخص می شود (ASTM C1260). نتایج آزمایش AMBT نشان می دهد که مخلوط با شیشه بیشتر در ملات انبساط بیشتری نیز داشته است. شرط برای این آزمایش این است که انبساط کمتر از 0.1% در عمر 21 روزه نشان دهنده سنگدانه غیر فعال و بیش از 0.1% در عمر 10 روزه نشان دهنده سنگدانه فعال است. انبساط کمتر از 0.1% در 10 روز ولی بیش از 0.1% در 21 روز نشان دهنده سنگدانه با واکنش آهسته است. بر اساس این شرط استفاده از بیش از 30% شیشه در بتن ممکن نیست اثرات زیانباری داشته باشد. (مخصوصا اگر قلیاییهای بتن کمتر از kg3 Na2O در یک متر مکعب باشد). بتنهای با قلیایی بیشترممکن است انبساطهای بیشتری را بوجود بیاورند. نتیجه نشان می دهد که اندازه های شیشه زیر mm0.3 اختمال کمی برای انبساط خطرناک دارند ولی اندازه های بزرگتر ازممکن است باعث انبساطهای قابل ملاخظه ای شوند. بنابراین اندازه انبساط وابسته به میزان شیشه موجود، اندازه ذرات و میزان قلیاییهای مخلوط است.این نتایج نشان می دهد که شیشه می تواند ژلAAR تولید کند و اگر اندازه ذرات به اندازه کافی کوچک شود می تواند به عنوان یک ماده پوزولانی عمل کند. mm0.6
مشخص شده است که فعالیت سنگدانه ها و انبساط حاصله می تواند با بکار بردن میزان مناسب از مواد با خاصیت سیمانی شدن مانند میکرو سیلیس و خاکستر هوایی کنترل شود. همچنین پودر شیشه ریز می تواند بصورت مشابه عمل کند. با توجه به کاربرد سنگدانه های ریز و درشت که مورد بررسی قرار گرفتند مخلوطهای آزمایشی با توجه به میزان سنگدانه های ریز و درشت مناسب در مخلوط بتن گسترش یافته اند. آزمایشات به سمت تولید بتن با حدود Mpa32 تحمل پیش رفتند. مخلوط محتوی Kg/m3255 سیمان و Kg/m3 85 خاکستر هوایی بود. میزان شن و ماسه به ترتیب Kg/m3 1080 و Kg/m3780 مناسب به نظر می رسید.
بعد از تعدادی سعی و خطا فرمولی رضایتبخش به سمت ویژگیهای مناسب بتن تازه جهت این مخلوط پیدا شد که به صورت زیر است: این موضوع از مقاومت بتنها آشکار است که این مخلوطها به راحتی به مقاومت Mpa32 رسیده و ختی از آن عبور می کنند( در حالی که از مقدار زیادی شیشه بازیافتی استفاده شده است). برای مصارف غیر سازه ای که مقاومت کمتری مورد نیاز است از همین مخلوط بدون کاهش دهنده (روان کننده) آب می توان استفاده کرد. با توجه به وجود 25% خاکستر هوایی در مخلوط ،بتن از واکنش ASR نیز محفوظ است. جمع شدگی ناشی از خشک شدن این مخلوطها خوب و زیر مرز 0.075% که توسط استاندارد استرالیا معین شده ، بود. با توجه به مطالب بالا به این نتیجه می رسیم که مقدرا حتی بیش از 50% از هر کدام از درشت دانه یا ریز دانه می توانند در مخلوط بتن سازه ای یا غیرسازه ای مصرف شوند. اگرچه دیگر پارامترهای مهندسی این مخلوط ها نیاز به تحقیق و بررسی بیشتری دارند.
4- اثرات پودر شیشه بر مقاومت ملات تقسیم اندازه ذرات پودر شیشه (GLP) بصورت زیر است: اندازه ذرات کوچکتر از 5 میکرون 5-10 میکرون 10-15 میکرون بزرگتر از 15 میکرون درصد 39 49 4.4 7.6 سطح مخصوص پودر شیشه m2/Kg 800بود که تقریبا دو برابر بیشتر سیمانهای موجود است. در مورد جایگزینی سیمان ممکن است کاهش مقاومت 28 روزه پیش بیاید که یک اثر کوتاه مدت است و خواص پوزولانی را آشکار می کند. همچنین خاکستر هوایی نیز وقتی که با میزان مشابه سیمان جایگزین می شود اثری مشابه تولید می کند. مقاومتهای طولانی تر با میکرو سیلیس مورد مطالعه قرار گرفتند. این سری از نمونه ها تشکیل شده بود از : نمونه کنترلی که ریزدانه فعال خاکستری داشت، نمونه با 10% میکروسیلیس ، با 20% پودر شیشه ، با 30% پودر شیشه که با سیمان مساوی جایگزین شده بودندو در یک نمونه نیز 30% پودر شیشه جایگزین سنگدانه ها شده بود. سه نتیجه نشان می دهد که جایگزینی 10% بخار سیلیس مقاومت بیشتری از جایگزینی GLP دارد. ولی همچنین نشان می دهد نمونه ملاتی که حاوی GLP باشد برای مدت طولانی تری رشد مقاومت خواهد داشت (به خاطر واکنش پوزولانی). باید توجه شود که وقتی 30% ماسه با پودر شیشه جایگزین می شود مقاومت 90 روزه برابر مقاومت مخلوط حاوی میکروسیلیس است. برای بررسی اثر مثبت جایگزینی پودر شیشه به جای سنگدانه ها دو آزمایش اضافی بر روی مکعبهای ملات انجام شد (270 روز عمل آوری شده).
در یک سری از نمونه ها 20% از سیمان با پودر شیشه جایگزین شد و در سری بعدی به علاوه 20% سیمان 10% از سنگدانه ها نیز جایگزین شدند. این جایگزینی به صرفه است (احتمالا به خاطر بهبود دانه بندی و واکنش پوزولانی). همچنین باید توجه شود که مقاومت مخلوط با 20% شیشه به جای سیمان و 10% به جای سنگدانه ها به مقاومت مخلوط محتوی میکرو سیلیس رسیده و از آن تجاوز می کند. ظاهرا اثرات سود آور مقایسه شده میکرو سیلیس بر مقاومت نسبت به پودر شیشه بصورتی زیاد در این آزمایش افزایش یافته اند. زیرا مخلوط با میکروسیلیس حاوی 90% سیمان است ولی مخلوطهای با پودر شیشه حاوی 80 و 70% سیمان هستند. برای مقایسه مبتنی بر میزان سیمان مساوی ، آزمایش مقاومت ملات بر روی دو سری از نمونه ها که حاوی شیشه دانه بندی شده به جای ریزدانه (80% شیشه و 20% ماسه طبیعی) که 30% از سیمان نیز با مواد دیگر جایگزین شده بود انجام شد. در یک نمونه 30% از سیمان با پودر شیشه جایگزین شد و در دیگری با مخلوطی از 10% میکروسیلیس و 20% سنگ بازالتی غیر پوزولانی نرم و ساییده شده. در این روش میزان سیمان هردو نمونه مساوی است. نتایج مقاومت برای هر دونمونه تقریبا یکسان است. باید به این نکته توجه شود که مقاومتهای نشان داده شده به علت تفاوت کلی در سنگدانه های ملات اساسا قابل مقایسه نیستند.


ادامه دارد..............
 
آخرین ویرایش:

sarbaz121

عضو جدید
ادامه............

ادامه............

ادامه...............

5- اثر پودر شیشه بر انبساط ملات دانه های در حد ماسه شیشه می توانند باعث واکنش قلیایی سنگدانه ها بصورت خطرناکی باشند ( مخصوصا در میزان بالای شیشه در آزمایش تسریع شده ملات). بنابر این 6 سری نمونه های ملات محتوی 80% دانه های شیشه فعال ساخته شد. نمونه کنترلی که حاوی سنگدانه و سیمان معمولی بود، و در 5 نمونه دیگر سیمان با 5% و 10% میکروسیلیس و 10 و20 و 30% پودر شیشه جایگزین شده بودند.
این ترکیبات (هردو حالت GLPو میکروسیلیس) در کاهش انبساط واکنش AAR موثر هستند به شرط اینکه به اندازه مناسب مصرف شوند (10%میکروسیلیس و <20%GLP). این نتایج نشان می دهد که نقش 20 و 30% GLP در توقف واکنش AAR بیشتر از 10% میکروسیلیس است. با وجود مقدار زیاد کربنات سدیم در شیشه (حدود13%) این نکته مهم است که خود دانه های پودر شیشه باعث انبساط طولانی مدت ملات نشوند و یا باعث تحریک سنگدانه های فعال مخلوط نباشند. آزمایش طولانی مدت استوانه ملات در 38 درجه سانتیگراد و 100% اشباع با سنگدانه های فعال و غیر فعال و با میزان جایگزینی مساوی سیمان (مانند آنچه در بالا گفته شد) انجام شد. انبساط کمتر از 0.1% در یک سال نشان دهنده ترکیب بی ضرر است. وقتی سنگدانه ها غیر فعالند خود GLP باعث انبساط مخلوط نمی شود. اما وقتی سنگدانه ها فعال هستند وجود 30%GLP باعث تحریک واکنش سنگدانه های خیلی حساس هم نمی شود. همچنین وقتی که سیمان جایگزین نشود و 30% GLP به جای سنگدانه استفاده شود باعث انبساط خطرناک استوانه ملات نمی شود. اطلاعات نشان می دهد که GLP می تواند بدون ترس از اثرات زیانبار آن استفاده شود.
6 -پودر شیشه در بتن اثر پودر شیشه بر انبساط بتن مشخص شد. یکسری سنگدانه خیلی فعال در منشور بتن (بر اساس ASTM C1293) استفاده شد.انبساط خطرناک در این آزمایش 0.03% تا 0.04% در یک سال است. 40% GLP که پتانسیل رها سازی قلیایی بیشتری از 30%GLP دارد می تواند تا 80% از انبساط ناشی از سنگدانه های فعال جلوگیری کند. برای سنگدانه های کمتر فعال نیز انبساط متوقف می شود. این امر نشان دهنده اثر مثبت GLP در بهبود دوام بتن است. وقتی که نسبتهای متفاوتی از GLP با سنگدانه های غیر فعال در بتن با قلیایی بالاتر (Na2O/m3 5.8) استفاده می شوند خود شیشه نیز باعث انبساط خطرناکی در مخلوط نمی شود. نتیجه آخر اینکه GLP اثر زیان آوری بر مخلوط بتن ندارد.
اثر پودر شیشه بر خزش و مقاومت بتن به تعداد نمونه ها ولی با قلیایی کمتر برای تعیین خزش خشک شدن بتن با مقادیر مختلف GLP و میکروسیلیس استفاده شد. اطلاعات طولانی مدت نشان می دهد که خزش خشک شدگی مخلوطهای متفاوت زیاد نیست و به راختی استانداردهای AS3600 را برآورده می کند.(کمتر از 0.075% در 56 روز).
به نظر می رسد که اگرچه مخلوط های محتوی GLP مقاومت اولیه کمتری دارند (با توجه به سیمان کمتر) ولی به رشد مقاومت خود در محیط نمناک ادامه می دهند و به مقاومت نمونه کنترلی نزدیک می شوند. همچنین وقتی که GLP با ماسه جایگزین می شود مقاومت بصورت چشمگیری از نمونه کنترلی بیشتر است. رشد ممتد مقاومت به وضوح اثر مثبت واکنش پوزولانی را در بتن نمایان می سازد.
7-بافت میکروسکوپی ملات محتوی پودر شیشه نمونه های ملات محتوی GLP که 270 روز در محیط نمناک بودند بوسیله میکروسکوپ الکترونی اسکن شدند. این نمونه های ملات نشان دهنده خصوصیات بتنهای با عمر مشابه نیز بودند. در هر دو مورد شکست سطح نمونه ملات حاکی از بافت میکروسکوپی متراکم بود.
8- نتیجه اطلاعات موجود در این مقاله نشان می دهد که پتانسیل زیادی در بازیافت شیشه و مصرف آن در حالتهای پودر ،ریزدانه و درشت دانه وجود دارد. این نتیجه نهایی می تواند حاصل شود که می توان با جایگزینی شیشه با مواد گرانقیمت ری مانند میکروسیلیس یا خاکسترهوایی و یا حتی سیمان در هزینه ها صرفه جویی کرد.

GLP


مصرف پودر شیشه در بتن می تواند از انبساط ASR در حضور سنگدانه های فعال جلوگیری کند. همچنین بهبود مقاومت پودر شیشه در ملات و بتن چشمگیر است. آزمایشات بافت میکروسکوپی نشان دهنده این است که پودر شیشه می تواند یک مخلوط متراکم تر تولید کند و خصوصیات دوام بتن را بهبود ببخشد. این نتیجه که 30% پودر شیشه می تواند به جای سیمان یا سنگدانه در بتن (بدون نگرانی از اثرات زیانبار طولانی مدت) جایگزین شود حاصل شد. بیشتر از 50% از هر دو (پودر شیشه یا سنگدانه شیشه ای) می تواند در بتن با رده مقاومت Mpa 32 باعث بهبود قابل قبول مقاومت بتن شود.
 

nimaparham

عضو جدید
کاربر ممتاز
اطلاعاتی در رابطه با استانداردها و آمارهایی برای جداول پرسی بتنی و نیز کف پوش های پرسی نیاز دارم
لطفا مهندسین عزیز راهنمایی نمایند
 

hamidelahi

عضو جدید
کاربر ممتاز
[ انواع بتن] ►

[ انواع بتن] ►

سالهای زیادی است که از بتن به عنوان یک ماده ساختمانی مهم و با تحمل فشارهای بالا جهت ساخت و ساز انواع سازه‌ها استفاده می‌شود. ضعف این ماده مهم و پر مصرف ساختمانی در مقابل کشش با قرار دادن آرماتور تا حد زیادی جبران شده است. در سالهای اخیر و با بررسی دوام سازه‌های بتنی مسلح بویژه در مناطق خورنده و سخت برای بتن نظر اکثر کارشناسان و دست ‌اندرکاران کارهای بتنی به این مسأله جلب شده است که مقاومت به تنهایی نمی‌تواند جوابگوی کلیه خواص مربوط به بتن بخصوص دوام آن باشد و لازم است در طراحی بتن برای مناطق مختلف علاوه بر مسأله مقاومت و تحمل بارها در طول مدت بهره‌دهی، پایایی و دوام آن نیز مد نظر قرار گیرد. در حال حاضر با اضافه نمودن مواد مختلف بتن و تغییرات در طرح اختلاط می‌توان به بتن‌هایی دست یافت که بدون تغییر قابل ملاحظه در مقاومت آنها از نقطه نظر دوام به بتن‌هایی با دوام بالا دست یافت. مسأله محیط زیست و آلودگی آن نیز در سالهای اخیر نظر جهانیان را بخود معطوف ساخته است. کاربرد مواد و مصالحی که در ساخت آن آلودگی کمتری به محیط منتقل گردد و همچنین برداشت مصالح طبیعی که کمتر محیط را تخریب نماید، مورد توجه خاص قرار دارد. در این راستا محدودیت کاربرد سنگدانه‌ها، دستیابی به مواد جدید و نیز استفاده از مواد زائد کارخانه‌ها و آلاینده‌های محیط زیست در بتن در رأس برنامه‌های تحقیقاتی پاره‌ای از کشورهای جهان قرار گرفته است.

علاوه بر خود بتن و مصالح تشکیل‌ دهنده آن در سالهای اخیر بر روی آرماتور مصرفی در سازه‌های بتنی مسلح نیز تحولاتی صورت گرفته است. بعنوان مثال و برای پرهیز از خطر خوردگی آرماتور، از فولادهای ضد زنگ و نیز آرماتورهای ساخته شده با الیاف‌ مختلف پلاستیکی و پلیمری در محیط‌های بسیار خورنده استفاده می‌شود. کار بر روی عملکرد دراز مدت چنین موادی هنوز ادامه دارد.

در مقاله اخیر به چند مورد از بتن‌های جدید که چند سالی است از آنها در صنعت ساخت و ساز برای سازه‌های بتنی استفاده می‌شود اشاره شده و مواد جدید مورد استفاده در بتن که تحقیقات روی آنها هنوز ادامه دارد، نیز بیان خواهد شد. بعنوان مثال بتن‌های با مقاومت زیاد و بتن‌های توانمند و با عملکرد بالا در این خصوص جایگاه ویژه‌ای دارند. کاربرد الیاف و مواد مختلف در بتن برای افزایش نرمی آن و مقاومت در مقابل بارهای ضربه‌ای و نیروهای ناشی از زلزله مورد دیگری از بتن‌های خاص می‌باشد. با نگرشی عمیق به مسأله دوام بتن و ضمن تأمین مقاومت لازم، کاربرد بتن‌های با کارایی بالا که اجرای آن را نیز آسان می‌سازد در برنامه کار مراکز بسیاری قرار گرفته و برخی از این بتن‌ها با اضافه کردن افزودنیهای مختلف به آنها، اینک وارد صنعت بتن شده‌اند.

بتن با مقاومت زیاد
امروزه بر اساس تکنولوژی رایج بتن، ساخت بتن‌های با مقاومت‌های فشاری زیاد و دور از انتظار که می‌تواند برای طراحی سازه‌های اجرایی رایج مورد استفاده قرار گیرند، امکان‌پذیر می‌باشد. اگر چه اغلب آیین‌نامه‌های بتن هنوز مقاومت بتن مورد استفاده در سازه‌ها را به MPa 60 محدود می‌کنند، اما آیین‌نامه‌های جدید اخیراً حدی بالاتر از MPa 105 را نیز در نظر گرفته‌‌اند ] 1 [. ساخت بتن‌های با مقاومت زیاد و در حد MPa 120 و کاربرد آن در ساختمان‌های بلند در کشورهای پیشرفته دنیا رواج یافته است. این مقاومت با اضافه نمودن مواد ریز و فعال به سیمان تا حدی افزایش یافته که بتن‌هایی با مقاومت‌های فشاری بین MPa 200 و MPa 800 و مقاومت‌های کششی بین MPa 30 و MPa 150 در نمونه‌های آزمایشگاهی بدست آمده است. برای دستیابی به چنین مقاومت‌هایی لازم است تغییراتی در طرح اختلاط داده و از مواد و افزودنی‌های جدیدی استفاده نمود.

از عوامل مهم در رسیدن به چنین مقاومت‌هایی استفاده از سنگدانه‌های مقاوم و کاهش حداکثر اندازه سنگدانه در مخلوط بتنی برای همگنی بیشتر آن می‌باشد. همچنین با استفاده از مواد بسیار ریزدانه و با اندازه‌های کمتر از دهم میکرون می‌توان مجموعه‌ای متراکم‌تر و با تخلخل بسیار کم که بالاترین وزن مخصوص را خواهد داشت، تهیه نمود. در بتن‌های با مقاومت زیاد بایستی تا حد ممکن نسبت آب به سیمان (w/c) را کاهش داد (امروزه حتی نسبت 18/0 = w/c استفاده شده است) که در این حالت بعضی دانه‌های سیمان هیدراته نشده بصورت مواد ریزدانه پرکننده، دانسیته را افزایش داده و در نتیجه سبب افزایش مقاومت می‌شوند. بدیهی است برای تأمین کارایی چنین مخلوط‌هایی با آب بسیار کم لازم است از روان‌ کننده‌ ها، فوق ‌روان‌کننده‌ ها و پخش کننده ذرات ریز در بتن استفاده نمود. برای افزایش نرمی چنین بتن‌هایی (با افزایش مقاومت شکنندگی و تردی بتن افزایش می‌یابد) می‌توان به آنها الیاف‌های کوتاه اضافه نمود. در ساخت چنین بتن‌هایی (مقاومت در حد فولاد و بالاتر) از روشهای سخت شده تحت فشار و دما برای عمل آوری بتن و تأمین مقاومت اولیه زیاد استفاده می‌گردد.

جدول 1- مشخصات بتن بکار رفته در یک ساختمان بلند در مونترال کانادا

طرح اختلاط خواص بتننسبت آب به سیمان 25/0 اسلامپ 250 میلی‌مترآب 135 لیتر درصد هوا 4/4 درصدسیمان نوع 1، 500 کیلوگرم در متر مکعب مقاومت فشاری 7 روزه 77 مگاپاسکالدوده سیلیس 30 کیلوگرم در متر مکعب مقاومت فشاری 28 روزه 3/92 مگاپاسکالشن‌با‌حداکثر اندازه10میلیمتر ‌1100‌کیلوگرم‌در مترمکعب مقاومت فشاری 90 روزه 106 مگاپاسکالماسه طبیعی 700 کیلوگرم در متر مکعب مقاومت فشاری یکساله 4/119 مگاپاسکالدیرگیر کننده 8/1 لیتر در متر مکعب فوق روان کننده 14 لیتر در متر مکعب
بتن های با کارایی بسیار زیاد (بتن خود متراکم)
امروزه در بعضی کشورهای جهان و بویژه در ژاپن بتن جدیدی با کارایی بسیار بالا که نیاز به لرزاندن نداشته و خودبخود متراکم می‌گردد ساخته شده و در برخی پروژه‌ها اجرا شده است. با داشتن کارایی بسیار زیاد این بتن در اجرا، خطر جدایی سنگدانه‌ها و خمیر را نداشته و در عین حال از مقاومت زیاد و دوام نسبتاً بالایی برخوردار است. در طرح اختلاط این بتن، موارد زیر در نظر گرفته شده است.

میزان شن در این بتن حدود 50 درصد حجم مواد جامد بتن بوده و در آن ماسه به میزان 40 درصد حجم ملات استفاده شده است. نسبت آب به مواد ریزدانه و پودری بر اساس خواص مواد ریز بین9/0 تا 1 انتخاب می‌شود. برای تعیین میزان نسبت آب به سیمان و مقدار فوق روان کننده مخصوص مصرفی با استفاده از روش میز روانی، مقدار بهینه با آزمون و خطا تعیین می‌گردد ]2و3[.

بتن با سنگدانه بازیافتی
امروزه با توجه به پیشرفت جمعیت و مشکل فضا در شهرهای بزرگ برای ساخت و ساز لازم است ساختمان‌های قدیمی بتنی تخریب و بجای آن ساختمان‌های بلند جدید احداث شوند. در کشور ژاپن و چند کشور اروپایی که زمین و فضای لازم برای ایجاد بنا ارزش ویژه‌ای دارد و همچنین برای جلوگیری از مسائل محیط‌زیستی که از تخریب ساختمانها ناشی می‌شود و کاربرد مصالح آن در بنای جدید تحقیقات وسیعی در ساخت بتن با سنگدانه بازیافتی (خورد کردن بتن قدیم و استفاده از آن بعنوان سنگدانه در بتن جدید) در حال انجام است. بعنوان مثال در کشور هلند هر سال حدود 10 میلیون تن مصالح ناشی از تخریب ساختمان‌های بتنی که حدود 3/1 حجم بتن مورد نیاز در ساخت ساختمانهاست، تولید می‌شود. قرار است نیمی از این مصالح در بتن‌های جدید استفاده شوند. در حال حاضر تحقیقات روی میزان جمع‌شدگی و خزش و دوام این بتن‌ها ادامه دارد تا در قرن بیست و یکم کاربرد وسیع‌تر آن را امکان‌پذیر سازد.

بتن‌های با نرمی بالا
امروزه کاربرد بتن با نرمی بالاتر که بتواند تغییر شکل‌های زیاد را بدون شکست تحمل نماید، مورد توجه قرار گرفته است. تحقیقات وسیعی در خصوص تأمین نرمی لازم در بتن با الیاف‌های مختلف و حتی حذف آرماتور در حال انجام می‌باشد. هدف از کاربرد الیاف در بتن افزایش مقاومت کششی، کنترل گسترش ترکها و افزایش طاقت (Toughness) بتن می‌باشد تا قطعه بتنی بتواند در مقابل بارهای وارده در یک مقطع ترک خورده تغییر شکل‌های زیادی را پس از نقطه حداکثر تنش تحمل نماید.

بتن با الیاف مختلف در سالهای اخیر در سازه‌های عمده‌ای چون روسازی راهها و فرودگاه‌ها، بتن پی‌های عظیم با تغییر شکل‌های زیاد و بویژه در پوشش بتنی تونلها بکار رفته است. در ساخت پوشش تونلها بتن الیافی با پاشیدن بر جداره شکل می‌پذیرد. اخیراً برای حذف ترکها در پوشش تونلهایی که بصورت چند تکه پیش ساخته اجرا می‌شود از بتن بدون آرماتور و تنها الیاف استفاده شده و این نوع بتن سبب حذف ترکها در حین عمل‌آوری و حمل و نقل قطعات و نصب آنها برای کامل کردن مقطع تونلهای مترو شده است.

در نوع بسیار جدید بتن الیافی که می‌توان با آن به حداکثر نرمی در بتن رسید از روش ریختن دوغاب روی الیاف (SIFCON) استفاده می‌شود. در این روش ابتدا الیاف ریخته شده و سپس فضای بین آنها با ملات دوغابی پر می‌شود. میزان الیاف در این بتن حدود 10 درصد می‌باشد که حدود 10 برابر میزان الیاف در بتن‌های الیافی متداول است. با این مصالح لایه‌های محافظی بدون ترک و تقریباً غیر قابل نفوذ می‌توان ایجاد نمود. بعلت نرمی زیاد این قطعات ظرفیت تغییر شکل‌پذیری این قطعات به میزان ظرفیت دالهای فولادی می‌رسد. مقاومت فشاری این نوع بتن حدود 110-85 مگاپاسکال و مقاومت خمشی حدود 45-35 مگاپاسکال می‌باشد. از این قطعات نه تنها می‌توان بعنوان لایه‌های محافظ کوچک استفاده نمود، بلکه در باندهای فرودگاه در برابر ضربات عملکرد خوبی نشان می‌دهند. در کارهای تعمیراتی دالها می‌توان از آنها بعنوان لایه روی بتن قدیم و بدون درز و در زمانی کوتاه استفاده نمود ]4[.

آرماتورهای غیر فولادی در بتن
در سالهای اخیر استفاده محدودی از آرماتورهای غیر فلزی آغاز گشته است هر چند تحقیقات بر روی کاربرد وسیع‌تر آنها و عملکرد دراز مدت این نوع آرماتورها ادامه دارد. این آرماتورها که معروف به آرماتورهای با الیاف پلاستیکی (FRP) هستند از الیاف مختلفی چون الیاف شیشه‌ای (GFRP)، الیاف آرامیدی (AFRP) و الیاف کربنی (CFRP) در یک رزین چسباننده تشکیل شده اند. در جدول 2 خواص مکانیکی چند آرماتور الیافی که کاربرد پیدا کرد‌ه‌اند‌، آورده شده است.

جدول - خواص مکانیکی الیاف‌های مختلف​

نوع الیاف مقاومت کششی (MPa) کرنش نهایی (٪)
E (Gpa)آرامید 3400-2700 4-5/2 165-73شیشه E 3500 5-3 75شیشه S 4500 5/5-5/4 87کربن مدول پایین 3900-3200 6/1-1 250کربن مدول بالا 2700-2300 6/0 400
خاصیت عمده این آرماتوها که سبب کاربرد آنها شده است، مقاومت در برابر خوردگی آنهاست که می‌تواند در محیط‌های بسیار خورنده دوام دراز مدتی داشته باشند. علاوه بر این مقاومت بالا، مقاومت به خستگی بالا، ظرفیت بالای تغییر شکل ارتجاعی، مقاومت الکتریکی زیاد و هدایت مغناطیسی پایین و کم این مواد از مزایای آنها شمرده می‌شود. البته این مواد معایبی چون کرنش گسیختگی کم و شکننده بودن و خزش زیاد و تفاوت قابل ملاحظه ضریب انبساط حرارتی آنها در مقایسه با بتن را به همراه دارند ] 5[.

اخیراً از الیاف مختلف شبکه‌هایی بافته شده و بصورت یک شبکه آرماتور در سطح بتن برای کنترل ترک و کم کردن عرض آن و همچنین در دیوارهای نمای بتنی از آن استفاده می‌کنند. تحقیقات روی کاربرد صفحات الیافی بجای صفحات فولادی برای تقویت قطعات خمشی و تیرها و دالها بویژه در پلها ادامه دارد. این صفحات بارزین‌های اپوکسی به نواحی کششی از خارج اتصال داده می‌شوند. کاربرد صفحات با الیاف کربنی برای این تقویت بیشتر رایج گشته و در چندین پل در ژاپن و در بعضی کشورهای اروپایی از آن استفاده شده است ]6[.

بتن‌های ابداعی
در بعضی موارد با تغییر در مواد تشکیل‌ دهنده بتن و با روش‌های ابداعی می‌توان پاره‌ای از خواص نامطلوب بتن را حذف نمود. این امر منجر به پیدایش بتن‌های خاص با خواص ویژه‌ای می‌گردد. بعنوان مثال تغییراتی است که می‌توان در ترکیب بتن‌های با مقاومت زیاد که این روزها کاربرد بیشتری پیدا می‌کنند را نام برد. بتن‌های با مقاومت بالا معمولاً با سیمان زیاد و نسبت آب به سیمان کم و اضافه و جایگزین نمودن سیمان با دوده سیلیس ساخته می‌شوند. در حین عمل هیدراسیون سیمان و سخت شدن این بتن‌ها چون آب داخل بتن کافی نیستَ، مقداری آب از سطح خارجی به قسمت داخلی برای تکمیل عمل فوق می‌رسد. بنابراین بتن های با مقاومت زیاد در ساعت اولیه سخت شدن دچار جمع‌شدگی ذاتی قابل ملاحظه‌ای می‌شوند. ممکن است اثرات منفی دیگری نظیر حساسیت به ترک‌خوردگی بیشتر در این بتن‌ها مشاهده شود. این معایب را می‌توان با روش ساده‌ای برطرف نمود. در یک عمل ابداعی می‌توان حدود 25 درصد از حجم سنگدانه را با سنگدانه سبک وزن قبلاً خیس شده جایگزین نمود. این سنگدانه‌ها باعث ایجاد ذخیره آب در بتن شده و محیطی با عمل‌آوری مرطوب فراهم می‌سازند. نتیجه اضافه کردن سنگدانه پیش اشباع شده به بتن با مقاومت زیاد، کاهش جمع‌شدگی ذاتی و کم شدن و حذف ترکهای مویی خواهد بود. همچنین تراکم و دانسیته بالای بتن‌های با مقاومت زیاد سبب کاهش مقاومت در برابر آتش این بتن‌ها می‌شود که بعنوان یک عیب محسوب می‌شود. در دمای بالا آب شیمیایی خمیر سیمان بخار شده ولی به علت متراکم بودن بتن با مقاومت زیاد نمی‌تواند از آن خارج شود. در نتیجه پوشش بتنی بصورت ورقه جدا شده و ظرفیت بارپذیری ستون کاهش می‌یابد. در یک کار ابداعی می‌توان الیاف پروپیلنی به بتن اضافه نمود. در دمای بالا الیاف ذوب شده و کانالهایی برای فرار و خروج بخار آب از بتن فراهم می‌سازند و از ورقه ورقه شدن بتن جلوگیری بعمل می‌آورند ]7[.

نتیجه‌گیری
در سالهای اخیر تحول عظیمی در تکنولوژی بتن و پیدایش بتن‌های جدید صورت گرفته است. این تحولات به پیدایش بتن‌های با مقاومت بسیار زیاد، بتن‌های با نرمی بالا، بتن‌های با آرماتورهای غیرفلزی، بتن با کارایی بسیار زیاد، بتن با سنگدانه‌های بازیافتی و بتن‌های ابداعی منجر شده است. باید اذعان نمود که نتایج تحقیقات سالهای آخر قرن حاضر و ادامه آنها در قرن جدید می‌تواند نگرش تازه‌ای به بتن بعنوان یک ماده ساختمانی پرمصرف بدهد. این نتایج منجر خواهد شد تا دیدگاه بتن بعنوان تنها یک ماده با مقاومت فشاری خوب به کلی دگرگون شده و خواص جدید بتن‌های نوین نظر اکثر دست اندرکاران پروژه‌های عظیم عمرانی را در جهان بخود معطوف سازد.



فهرست مراجع
[1] “ Norwegian standard NS3473, concrete structures, Design rules”, Oslo, 1989.
[2] H. Okamura, “Self compacting high performance concrete”, Ferguson Lecture at ACI convention (New Orleans), November 1996.
[3] H. Okamura and K.Ozawa, “Mix design for Self compacting concrete”, Concrete library international, Japan, No. 25, Dec. 1995.
[4] G. Konig et. Al., “New concepts for high performance concrete with improved ductility”, proceedings of the 12th FIP congress on challenges for concrete in the next millennium, Netherlands, 1998, pp. 49-53.
[5] A. Nanni, “Fiber-reinforced plastic (FRP) reinforcement for concrete structures: properties and applications”, Elsevier, London, 1993.
[6] Taerwe, “Non-Metallic (FRP) reinforcement for concrete structures”, RILEM proceedings, No. 29, E & FN Spon, London, 1995.
[7] R.Breitenbucher, “High strength concrete C 105 with increased fiber resistance due to polypropylene fibers”, 4th
 

hamidelahi

عضو جدید
کاربر ممتاز
[ انواع بتن] ►

[ انواع بتن] ►

مقدمه

به مجموعه‌ای از ذرات سنگی که از کمترین تخلخل برخوردارند و دانه‌های آن توسط دوغابی از سیمان به هم چسبیده باشند، بتن (Concreate) گفته می‌شود. به زبان دیگر ، بتن متشکل از یک جسم پرکننده (مصالح سنگی) و یک جسم چسبنده (آب و سیمان یا دوغاب سیمان) است. بتن به دلیل کارائیهای مثبتی که دارد، امروزه به عنوان یکی از پر مصرف ترین مصالح ساختمانی در آمده است.
کارائیهای بتن

اقتصادی بودن

حدود 80 درصد وزن بتن از مصالح سنگی ارزان قیمت درست شده است.
تنوع

با تغییر نوع و مقدار سیمان و مصالح سنگی و انجام برخی اعمال فیزیکی و شیمیایی می‌توان بتن‌هایی با خواص کاملا متفاوت تهیه کرد.
شکل پذیری

با کمترین مخارج می‌توان قطعاتی با اشکال مختلف از بتن تهیه کرد.
مکانیزه شدن

تهیه و تولید بتن را می‌توان به صورت مکانیزه انجام داد. به این وسیله می‌توان قدرت تولید بتن و کیفیت آن را افزایش و قیمت تمام شده آن را کاهش داد.
ویژگیهای مهم بتن

ویژگیهای مهم بتن شامل مقاومت ، وزن ، قابلیت کار و دوام است که از این میان مقاومت از اهمیت خاصی برخوردار است. مقاومت بتن بیش از همه به عواملی مانند نوع و مقدار سیمان ، کمیت و کیفیت آب مصرفی ، مشخصات فیزیکی و شیمیایی مصالح سنگی ، نحوه ساختن و عمل آوردن بتن و بالاخره نوع و سن بتن بستگی دارد.
تهیه بتن

مقدار کم بتن را معمولا بطور دستی می‌سازند. بتن را اغلب در حمل ساخته و مصرف می‌کنند. در مواردی نیز بتن در کارخانه ساخته شده و توسط کامیون به محل مصرف حمل می‌شود. بتن را بهتر است پس از ساختن هرچه زودتر مصرف کرد. برای اینکه بتن شکل مورد نظر را به خود بگیرد از قالب استفاده می‌شود. پس از آنکه بتن در قالب ریخته شد، باید آن را متراکم نمود (عمل آورد) تا مقاومت آن افزایش یابد. بتن سخت را در لایه‌های متوالی 15 الی 20 سانتیمتری در قالب می‌ریزند و با تخماق می‌کوبند تا به اصطلاح عرق کند. بر اثر این عمل دانه‌های سنگی در کنار هم جفت و جور شده و هوای موجود در بتن به صورت کف (شیر بتن) به سطح آن می‌آید.

برای دستیابی به بتن مناسب باید هوای آن ، تا 3 درصد حجم بتن کاهش یابد. بتن‌های دارای حجم زیاد را با لرزاندن از داخل متراکم می‌کنند. به این صورت که خرطوم لرزاننده‌ای را داخل بتن نموده و آن را جابجا می‌کنند. گرما در گرفتن و سخت شدن بتن اثر زیادی دارد. در گرما بتن زود می‌گیرد و سخت می‌شود. در مقابل در دمای صفر درجه سانتیگراد دوغاب سیمان نمی‌گیرد و سخت نمی‌شود. بتن را در دماهایی تا 5 درجه سانتیگراد می‌توان ساخت، به شرط آنکه تا 4 روز دمای آن از 5 درجه کمتر نشود. بتن سازی در نقاط سرد سیر بوسیله گرم کردن مصالح صورت می‌گیرد.
اجزا تشکیل دهنده بتن

بتن ترکیبی از سیمان ، آب و مصالح خرده سنگی (شن و ماسه) است که به نسبتهای متناسب بطور دستی یا مکانیکی با یکدیگر مخلوط شده است.
سیمان

سیمان ماده‌ای است پودری شکل که در کارخانه تهیه شده و بر اثر آبگیری سخت می‌شود. سیمانها انواع مختلف دارند که معروفترین آنها سیمان پرتلند است. سیمان پرتلند فرآورده‌ای است که عمدتا از مخلوط کردن سنگ آهک و خاک رس بدست می‌آید.
آب

آبی که در ساختن بتن مصرف می‌شود، باید عاری از مواد مضر برای بتن باشد. در این رابطه مقدار سولفاتهای آب نباید از یک گرم در لیتر بیشتر باشد. آب گندآبها و فاضلاب شهرها برای ساختن بتن مناسب نیست. آب مصرفی نباید خاصیت اسیدی زیاد داشته و PH آن نباید کمتر از 4 باشد. مقدار آب بکار رفته در بتن متغیر است و به عوامل مختلف بستگی دارد. غلیظ بودن بتن ، درشتی ذرات سنگی ، صاف بودن سطح دانه‌ها ، کروی بودن ذرات سنگی ، سردی هوا و وجود رطوبت در آن مقدار آب لازم را کاهش می‌دهد. در مقابل رقیق بودن بتن ، ریز و خشک بودن ذرات سنگی ، گرمی هوا ، ناصافی سطح دانه‌ها و گوشه داری آنها مصرف آب را افزایش می‌دهد.
مصالح خرده سنگی

امروزه در تهیه بتن‌ها دامنه گسترده‌ای از مواد طبیعی و مصنوعی بکار گرفته می‌شوند. از این میان شن و ماسه طبیعی بهترین و پرمصرفترین مصالح هستند. مصالح دانه‌ای بکار گرفته شده در بتن در درجه اول شن و ماسه طبیعی و پس از آن سنگ شکسته یا مخلوطی از آنهاست. یکی از دلایل عمده عدم استحکام کافی و تخریب زود رس بتن ، استفاده از مصالح دانه‌ای نامرغوب است. بطور کلی ذراتی مناسب‌اند که تمیز ، بدون پوشش سطحی ، دارای دانه بندی مناسب ، محکم و بادوام و عاری از مواد آلوده کننده باشند. علاوه بر آن ، این مواد باید قادر باشند بطور مناسبی در مقابل تغییرات فیزیکی و شیمیایی محیط مقاومت نمایند.
 

mehrce

کاربر فعال مهندسی عمران ,
کاربر ممتاز
همه چیز در مورد بتن

همه چیز در مورد بتن

یک pdf کامل 437 صفحه ای در مورد بتن که شامل مطالب زیر است را میتوانید با کلیک بر روی لینک زیر دانلود کنید.

[url]http://mehrce.persiangig.com/omran/proje%20beton.pdf/download[/URL]

مواد تشکیل دهنده بتن
عمل آوری بتن
طرح اخطلاط بتن
انواع بتن
کاربرد در کامپوزیت
بتن اکسپوز
بتن ریزی
مدیریت حفاظت بتن
علل فرسودگی و تخریب سازه های بتنی
عملیات بهسازی و مرمت
و مطالب مختلف دیگر در مورد بتن.

گردآورندگان این مطلب : ابراهیم طاهری ، مهران حاجی علیزاده ، امیر نوروزی ، احمد اعظمی
 
آخرین ویرایش توسط مدیر:

rasool.civil

مدیر بازنشسته
مقاله [ بتن]

مقاله [ بتن]

استفاده از لاستیکهای فرسوده در بتن

در هر سال فقط در ايالات متحده ۲۵۰ ميليون تاير فرسوده به وزنبيش از ۳ ميليون تن جمع آوری می شود. همچنين يکی از بزرگترين چالشهای محيط زيستیموجود در اطراف کلان شهرها در جهان نحوه بازيافت و حذف مواد لاستيکی زائد از چرخهزيست محيطی می باشد. يکی از راه حلهای که برای حل اين مشکل پيشنهاد شده است استفادهاز ذرات لاستيک تاير بعنوان يک ماده افزودنی در مصالح بر پايه سيمان است.
اگرچه بتنيک ماده محبوب و پراستفاده در مصالح ساختمانی است اما دارای تقطه ضعفهايی نيز میباشد . همانند مقاومت کششی پايين ، شکل پذيری پايين ، جذب انرژی کم، انقباض و جمعشدگی بتن (shrinkage) و در پی آن ترک خوردگی ناشی از آن و در نهايت ترکهای ناشی ازعمل آوری نامناسب و سخت شدگی بتن (hardening and curing cracking). يافته های جديدنشان می دهد که استفاده از ذرات تايرهای فرسوده به ميزان زيادی می تواند اين نقاطضعف بتن را برطرف کند. هر چند استفاده از لاستيک در آسفالت بيشتر از يک دهه است کهصورت می گيرد اما کاربرد آن در بتن بتازگی صورت گرفته است و تحقيقات زيادی بر امکانسنجی آن انجام شده. هرچند اين تحقيقات هنوز کامل نشده است اما روشهای آزمايشیمختلفی برای کاربرد اين لاستيک ها حاصل گرديده است .
معمولا جايگزينی کامل سنگدانههای درشت دانه(شن) و سنگدانه های ريزدانه(ماسه ) با لاستيک بدليل کاهش مقاومت شديدمناسب بنظر نمی رسد. ولی با جايگزينی نسبت کمی از آن با سنگدانه ها کاهش مقاومتناچيزی صورت می گيرد که قابل صرفنظر کردن است.
مطالعات نشان می دهد که ميزان لاستيکنبايد از ۲۰-۱۷ درصد کل حجم سنگدانه ها بيشتر شود . همچنين آزمايشها نشان می دهدکه استفاده از لاستيک در مخلوط بتن سيمانی ميزان انقباض و ترکيدگی بتن در اثر ازدست دادن آب (drying shrinkage) ،شکنندگی و مدول الاستيسته بتن را کاهش می دهد وبطور کلی پايايی و دوام ( durability) و سرويس دهی بتن سيمانی را افزايش ميدهد. بتازگی دکتر زاوو (Dr. Zhu) استاد دانشگاه آريزونا در آمريکا تلاشهايی را برایکاربرد بتن لاستيکی در پروژه های مسکونی و تجاری آغاز کرده است. او در نمونه خود درحدود ۸ درصد وزن سيمان از لاستيکهای فرسوده ريزشده استفاده کرده است
 
آخرین ویرایش توسط مدیر:

rasool.civil

مدیر بازنشسته
فوق روان کننده و کاهش دهنده شدید آب در بتن

فوق روان کننده و کاهش دهنده شدید آب در بتن

فوق روان کننده بر اساس الزامات استاندارد ASTM-C494 Types A& F ساخته می شوند این مواد را بعنوان روانسازهای بتن و فوق روانسازهای بتن مصرف کنند و براساس استاندارد 2930 ایران ساخته می شوند.
گفتنی است این مواد ممکن است توسط تولید کنندگان بتن آماده و قطعات پیش ساخته بتنی برای تولید کار آمد و مقرون به صرفه زمانی که شکل پذیری زیاد بتن و افزایش مقاومت اولیه و نهایی مد نظر است ، مورداستفاده قرار گیرند .
باید اشاره کرد این محصولات در کاهش آب بسیار موثر بوده تا جایی که وقتی به عنوان یک کاهش آب دهنده شدید آب بتن مورد استفاده قرار می گیرند در مقادیر متعارف می تواند به سادگی بین 20%-18% کاهش در میزان آب مصرفی ایجاد نماید ودر مواردی در بتنهای خاص و با استفاده از مقادیر متعارف، کاهش آب تا حداکثر 40% نیز ممکن شده است .
همچنین خاصیت روان کنندگی زیاد این مواد سبب می شود بتنی با اسلامپ زیاد، روان و خود تراز شونده حاصل گردد . کارآیی این بتن نسبت به بتن معمولی بسیار شگرف و قابل تمایز است . بطوریکه بتن با حداقل عملیات و ویبره کردن یا حتی به خودی خود ، در حالیکه مصرف آب آن به حداقل رسیده در قالب جای می گیرد .
شایان ذکر است از ترکیب خواص فوق روان کنندگی و کاهش دهندگی شدید آب بتن مزایای زیر حاصل می گردد :
مقاومت اولیه زیاد امکان تسریع در عملیات بازکردن قالبها و باعث استفاده مقرون به صرفه تر از قالبهامی شود، مقاومت اولیه و نهایی زیاد برای بتن پر مقاومت و مقرون به صرفه، افزایش کار آیی باعث کاهش هزینه های استهلاک و سختی کار می گردد و افزایش اسلامپ ،امکان تولید بتنی خود تراز شونده رابوجودمی آورد، مقاومت نهایی بالاتر به مهندسین محاسب قدرت انعطاف بیشتری را در ارائه یک طرح بهینه اقتصادی ارائه می دهد .
خاصیت فوق العاده روان کنندگی باعث تسهیل در پمپ نمودن و کاهش نیاز به ویبره کردن بتن می گردد .
نسبت آب به سیمان کاهش یافته ، دوام و تراکم بیشتر بتن را با کاهش نفوذپذیری بتن باعث می شود.
 

rasool.civil

مدیر بازنشسته
فرسودگی بتن

فرسودگی بتن

علل مختلفي كه باعث فرسودگي و تخريب سازه هاي بتني مي شوند - علائم هشدار دهنده كه كار مرمت را الزامي مي دارند.
1- علل فرسودگي و تخريب سازه هاي بتني (CAUSES OF DETERIORATIONS)
علل مختلفي كه باعث فرسودگي و تخريب سازه هاي بتني مي شود همراه با علائم هشدار دهنده ديگري كه كار تعميرات را الزامي مي دارند، در نخستين بخش از كتاب مورد بررسي و تحليل قرار مي گيرند:
1-1- نفوذ نمكها (INGRESS OF SALTS)
نمكهاي ته نشين شده كه حاصل تبخير و يا جريان آبهاي داراي املاح مي باشند و همچنين نمكهايي كه توسط باد در خلل و فرج و تركها جمع مي شوند، هنگام كريستاليزه شدن مي توانند فشار مخربي به سازه ها وارد كنند كه اين عمل علاوه بر تسريع و تشديد زنگ زدگي و خوردگي آرماتورها به واسطه وجود نمكهاست. تر وخشك شدن متناوب نيز مي تواند تمركز نمكها را شدت بخشد زيرا آب داراي املاح، پس از تبخير، املاح خود را به جا مي گذارد.
1-2- اشتباهات طراحي (SPECIFICATION ERRORS)
به كارگيري استانداردهاي نامناسب و مشخصات فني غلط در رابطه با انتخاب مواد، روشهاي اجرايي و عملكرد خود سازه، مي تواند به خرابي بتن منجر شود. به عنوان مثال استفاده از استانداردهاي اروپايي و آمريكايي جهت اجراي پروژه هايي در مناطق خليج فارس، جايي كه آب و هوا و مواد و مصالح ساختماني و مهارت افراد متفاوت با همه اين عوامل در شمال اروپا و آمريكاست، باعث مي شود تا دوام و پايايي سازه هاي بتني در مناطق ياد شده كاهش يافته و در بهره برداري از سازه نيز با مسائل بسيار جدي مواجه گرديم.
1-3- اشتباهات اجرايي (CON STRUCTION ERRORS)
كم كاريها، اشتباهات و نقصهايي كه به هنگام اجراي پروژه ها رخ مي دهد، ممكن است باعث گردد تا آسيبهايي چون پديدهء لانه زنبوري، حفره هاي آب انداختگي، جداشدگي، تركهاي جمع شدگي، فضاهاي خالي اضافي يا بتن آلوده شده، به وجود آيد كه همگي آنها به مشكلات جدي مي انجامند.
اين گونه نقصها و اشكالات را مي توان زاييدهء كارآئي، درجهء فشردگي، سيستم عمل آوري، آب مخلوط آلوده، سنگدانه هاي آلوده و استفاده غلط از افزودنيها به صورت فردي و يا گروهي دانست.
1-4- حملات كلريدي (CHLORIDE ATTACK)
وجود كلريد آزاد در بتن مي تواند به لايهء حفاظتي غير فعالي كه در اطراف آرماتورها قرار دارد، آسيب وارد نموده و آن را از بين ببرد.
خوردگي كلريدي آرماتورهايي كه درون بتن قرار دارند، يك عمل الكتروشيميايي است كه بنا به خاصيتش، جهت انجام اين فرآيند، غلظت مورد نياز يون كلريد، نواحي آندي و كاتدي، وجود الكتروليت و رسيدن اكسيژن به مناطق كاتدي در سل (CELL)خوردگي را فراهم مي كند.
گفته مي شود كه خوردگي كلريدي وقتي حاصل مي شود كه مقدار كلريد موجود در بتن بيش از 6/0 كيلوگرم در هر متر مكعب بتن باشد. ولي اين مقدار به كيفيت بتن نيز بستگي دارد.
خوردگي آبله رويي حاصل از كلريد مي تواند موضعي و عميق باشد كه اين عمل در صورت وجود يك سطح بسيار كوچك آندي و يك سطح بسيار وسيع كاتدي به وقوع مي پيوندد كه خوردگي آن نيز با شدت بسيار صورت مي گيرد. از جمله مشخصات (FEATURES ) خوردگي كلريدي، مي توان موارد زير را نام برد:
(الف) هنگامي كه كلريد در مراحل مياني تركيبات (عمل و عكس العمل) شيميايي مورد استفاده قرار گرفته ولي در انتها كلريد مصرف نشده باشد.
(ب) هنگامي كه تشكيل همزمان اسيد هيدروكلريك، درجه PH مناطق خورده شده را پايين بياورد. وجود كلريدها هم مي تواند به علت استفاده از افزودنيهاي كلريد باشد و هم مي تواند ناشي از نفوذيابي كلريد از هواي اطراف باشد.
فرض بر اين است كه مقدار نفوذ يونهاي كلريدي تابعيت از قانون نفوذ FICK دارد. ولي علاوه بر انتشار (DIFFUSION) به نفوذ(PENETRATION) كلريد احتمال دارد به خاطر مكش موئينه (CAPILLARY SUCTION) نيز انجام پذيرد.
1-5- حملات سولفاتي (SULPHATE ATTACK)
محلول نمكهاي سولفاتي از قبيل سولفاتهاي سديم و منيزيم به دو طريق مي توانند بتن را مورد حمله و تخريب قرار دهند. در طريق اول يون سولفات ممكن است آلومينات سيمان را مورد حمله قرار داده و ضمن تركيب، نمكهاي دوتايي از قبيل:THAUMASITE و ETTRINGITEتوليد نمايد كه در آب محلول مي باشند. وجود اين گونه نمكها در حضور هيدروكسيد كلسيم، طبيعت كلوئيدي(COLLOIDAL) داشته كه مي تواند منبسط شده و با ازدياد حجم، تخريب بتن را باعث گردد. طريق دومي كه محلولهاي سولفاتي قادر به آسيب رساني به بتن هستند عبارتست از: تبديل هيدروكسيد كلسيم به نمكهاي محلول در آب مانند گچ (GYPSUM) و ميرابليت MIRABILITE كه باعث تجزيه و نرم شدن سطوح بتن مي شود و عمل LEACHING يا خلل و فرج دار شدن بتن به واسطه يك مايع حلال، به وقوع مي پيوند
 

Similar threads

بالا